
•-,""•

D

Q

:.""

Subroutines Reference
Guide
Volume III

DOC10082-1LA

Subroutines
Reference Guide

Volume III

First Edition

by

Debra Spencer

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 20.2 (Rev. 20.2).

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1986 by
Prime Computer, Inc.

Prime Park
Natick, Massachusetts 01760

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc. The
PRIME logo is a trademark of Prime Computer, Inc.

DISCOVER, MIDASPLUS, PERFORMER, Prime INFORMATION, PRIMELINK, PRIME
MEDUSA, PRIMENET, PRIME/SNA, PRIME TIMER, PRIMEWAY, PRIMIX, PRISAM,
PRODUCER, PST 100, PT200, PW150, RINGNET, 50 Series, 750, 850, 2250,
2350, 2450, 2550, 2655, 9650, 9655, 9750, 9950, and 9955 are also
trademarks of Prime Computer, Inc.

CREDITS

WITH SPECIAL THANKS TO DAVID BROOKS FOR HIS TECHNICAL EXPERTISE
AND TO CAMILLA HAASE FOR WRITING CHAPTERS ONE AND SIX

Project Support Joan Karp
Margaret Taft
Alice Landy
Richard Frost
Leonard Bruns

Editorial Support Mary Skousgaard
Thelma Henner

Graphic Support Marjorie Clark
Mingling Chang

Production Support Judy Gordon

Document Preparation Celeste Henry
Support Kathy Normington

li

PRINTING HISTORY — Subroutines Reference Guide, Volumes I-IV

Edition Date Number Software Release

First Edition
Second Edition
Update 1
Third Edition
First Edition
Volume I
Volume II
Volume III
Volume IV

March 1979
January 1980
December 1980
July 1982

August 1986
August 1986
August 1986
August 1986

PDR3621
PDR3621
PTU2600-078
DOC3621-190

DOC10080-1LA
DOC10081-1LA
DOC10082-1LA
DOC10083-1LA

16.3
17.2
18.1
19.0

20.2
20.2
20.2
20.2

CUSTOMER SUPPORT CENTER

Prime provides the following
United States needing service:

toll-free numbers for customers in the

1-800-322-2838 (within Massachusetts)
1-800-343-2320 (within other states)

1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)

HOW TO ORDER TECHNICAL DOCUMENTS

Follow the instructions below to obtain a catalog, price list, and
information on placing orders.

United States Customers International

Call Prime Telemarketing,
toll free, at 1-800-343-2533,
Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

Contact your local Prime
subsidiary or distributor.

i n

Contents

ABOUT THIS BOOK vii

1 OVERVIEW OF SUBROUTINES

Functions and Subroutines 1-1
Subroutine Descriptions 1-2
Subroutine Usage 1-2
Subroutine Parameters 1-6

CORE OPERATING SYSTEM SERVICES

System Information Routines 2-2
User Information Routines 2-16

3 USER TERMINAL I/O

Command Input Files 3-2
Phantom Input and Output 3-3
Assigned Lines 3-3
Single-character Arguments 3-3
User Terminal Input Routines 3-4
User Terminal Output Routines 3-29
User Terminal Control Routines 3-49

4 MEMORY ALLOCATION

General-purpose Allocate and
Free Routines 4-2

Command Function Returned Data
Routines 4-15

Informational Routines 4-24

5 PROGRAM CONTROL

Recursive Command Environment 5-1
Phantom Processes and Logout
Notification 5-2

Command Level Control Routines 5-4
Static-mode Save and Restore
Routines 5-12

Phantom Process Control Routines 5-19

6 CONVERSION ROUTINES AND OTHER UTILITIES

Numeric Conversion Routines 6-2
Date Conversion Routines 6-11
Other Routines 6-20

7 CONDITION MECHANISM

Creating and Using On-units 7-2
Examples of Programs 7-7
Additional Program Examples 7-10
Crawlout Mechanism 7-17
Condition Mechanism Routines 7-18
Exit Condition Control Routines 7-34
Data Structure Formats 7-38

8 SEMAPHORES AND TIMERS

Realtime and Interuser
Communication Facilities 8-1

Semaphores 8-1
Prime Semaphores 8-6
Coding Considerations 8-8
Pitfalls and How to Avoid Them 8-9
Locks 8-12
Semaphore Routines 8-16
Limit Timer Routine 8-35
Process Delay Routines 8-38

9 MESSAGE FACILITY 9-1

10 SUPERSEDED ROUTINES 10-1

APPENDIXES

A STANDARD CONDITIONS A-l

B DATA TYPE EQUIVALENTS B-l

C FILE-SYSTEM DATE FORMAT C-l

INDEX OF SUBROUTINES SX-1

INDEX X-l

vi

About This Book

The Subroutines Reference Guide is organized to give a systematic
description of subroutine libraries — sets of routines, all broadly
dealing with the same subject, grouped together in one executable file.
The subroutines in these libraries free the programmer from the need to
rewrite the typically repeated piece of code. The programmer can, of
course, make personalized subroutines as well, but will find an
abundance of them already on call.

OVERVIEW OF THIS SERIES

The Subroutines Reference Guide consists of a series of four volumes
A brief summary of the contents of each volume follows.

Volume I

Volume I is an introduction to the entire Subroutines Reference Guide.
It describes the nature and functions of Prime's standard subroutines
and subroutine libraries. It explains how subroutines can be called
from programs written in Prime's programming languages: C, COBOL, CBL,
FORTRAN IV, FORTRAN 77, Pascal, PL/I, BASIC V/M, and PMA.

VII

Volume II

Volume II describes several functional groups of subroutines, dealing
with the access to and management of file system entities, the
manipulation of EPFs in the execution environment, and the use of a
number of command environment functions. Three chapters are devoted to
subroutines related to the file system, and one chapter each is devoted
to those related to EPF management and to the command environment.

Volume III

Volume III describes system subroutines. The subroutines covered in
this volume are the general system calls to the operating system and
standard system library. This excludes file and EPF manipulation,
which are described in Volume II.

Volume IV

Volume IV presents several mature libraries: the Input/Output Control
System (IOCS) libraries and other ' I/O-related subroutines, the
Application libraries, the SORT libraries, and MATHLB.

IOCS provides device-independent I/O. The chapters on IOCS provide
descriptions of the device-independent subroutines plus those
device-dependent subroutines simplified by IOCS. Another section
provides descriptions of the synchronous and asynchronous device-driver
subroutines.

Sections on the Application Library, the Sort Libraries, and the
FORTRAN Matrix library provide descriptions of other program
development subroutines especially useful for FORTRAN programs.

SPECIFICS OF THIS VOLUME

Volume III describes system subroutines. The subroutines covered in
this volume are the general system calls to the operating system and
standard system library. This excludes file and EPF manipulation,
which are described in Volume II.

SUGGESTED REFERENCES

The Prime User's Guide (DOC4130-4LA) contains information on system
use, directory structure, the condition mechanism, CPL files, ACLs, and
how to load and execute files with external subroutines. Language
programmers will also need the reference guide for their particular
languages.

v m

Programmers who wish more advanced information on library management or
I/O manipulation should consult the System Administrator7 s Guide
(DOC5037-4LA).

The following related Prime publications are also available:

Advanced Programmers's Guide, Volume 0 (DOC9229-1LA)

Instruction Sets Guide (DOC9474-1LA)

Operator's Guide to System Commands {DOC9304-2LA and UPD9304-21A)

SEG and LOAD Reference Guide (DOC3524-192L)

System Architecture Reference Guide (DOC3060-192L)

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase.

Convention

UPPERCASE

lowercase

Abbreviations

Explanation

In command formats, words
in uppercase indicate the
actual names of commands,
statements, and keywords.
They can be entered in
either uppercase or
lowercase.

In command formats, words
in lowercase indicate items
for which the user must
substitute a suitable value.

If a command or statement
has an abbreviation, it is
indicated by underlining.
In cases where the command
or directive itself
contains an underscore, the
abbreviation is shown below
the full name, and the name
and abbreviation are placed
within braces.

Example

SLIST

LOGIN user-id

LOGOUT

{ SET_QUOTA I
SQ }

I X

Convention

Underlining
in

examples

Brackets

Braces

Explanation

In examples, user input
is underlined but system
prompts and output are not.

Brackets enclose a list
of two or more optional
items. Choose none, one,
or more of these items.

Braces enclose a list
of items. Choose one
and only one of these
items.

Example

OK, RESUME MY_PROG
This is the output
of MY_PROG.CPL
OK,

[-LIST "I
-CANCEL

(f i :

1 AL]

CLOSE | filename
ALL

Ellipsis An ellipsis indicates that
the preceding item may be
repeated.

item-x[,item-y]

Parentheses
()

In command or statement
formats, parentheses must
be entered exactly
as shown.

DIM array (row,col)

Hyphen Wherever a hyphen appears
as the first letter of an
option, it is a required
part of that option.

SPOOL -LIST
/^\

/«8v

X

FILENAME CONVENTIONS

Filenames may contain up to 32 characters, the first character of which
must be nonnumeric. Names must not begin with a hyphen (-) or
underscore (_). Filenames consist of only the following characters:
A-Z, a-z, 0-9, _ # $ & - * . and /.

See the manual for each language for an explanation of how the various
names for source, object, listing, and runtime files relate to each
other. Also see the Prime User's Guide for a general explanation.

Note

On some devices, the underscore (_)
(<-).

may print as a back arrow

Convention

filename.languagename
or filename

Explanation

Source file (for example, MYPROG.FTN)

filename.BIN or
B_filename

Binary (object) file

filename.LIST or
L_filename

filename.RUN

filename.SEG or
#filename

Listing file

EPF runfile (V-mode and I-mode)
(runfile in executable program format)

Saved executable runfile (V-mode)

filename.SAVE or
•filename

Saved executable object image (R-mode)

XI

1
Overview of
Subroutines

A subroutine is a module of code that can be called from another
module. It is useful for performing operations that cannot be
performed by the calling language, or for performing standard
operations faster. Users can write their own subroutines to supply
customized or repetitive operations. However, this guide discusses
only standard subroutines provided with the PRIMOS® operating system
or in standard libraries.

This chapter summarizes the calling conventions for Prime subroutines
and explains the format of the subroutine descriptions in this volume.
It assumes that readers know a high-level language or PMA (Prime Macro
Assembler), and that they are familiar with the concept of external
subroutines. For more information on calling subroutines from Prime
languages, see the chapter on your particular language in Volume I.

FUNCTIONS AND SUBROUTINES

In this guide, a function is a call that returns a value. You call a
function by using it in an expression; the function's returned value
can then be assigned to a variable or used in other operations within
the expression. Here, the value returned by DELE$A is assigned to the
variable VALUE1:

VALUE1 = DELE$A(argl, arg2);

1-1 First Edition

SUBROUTINES, VOLUME III

A subroutine returns values only through its arguments. It is called
this way:

CALL GV$GET(argl, arg2, arg3, arg4);

However, the word subroutine is also used as the collective term for
both of these modules.

SUBROUTINE DESCRIPTIONS

In this guide, each description of a subroutine contains the following
sections:

• Purpose. A brief description of what the subroutine does.

• Usage. The format of a subroutine declaration and a subroutine
call, using PL/I language elements. For further information,
see the section SUBROUTINE USAGE below.

• Parameters. Information about the arguments the subroutine
expects and the values it returns. For further information, see
the section SUBROUTINE PARAMETERS later in this chapter.

• Discussion. Additional information about the subroutine and
examples of its use.

• Loading and Linking Information. Information about what
libraries must be loaded during the loading and linking process.
For more information, see Satisfying the References at Load Time
later in this chapter.

Figure 1-1 shows an example of a subroutine description.

SUBROUTINE USAGE

The Usage section of each subroutine description includes two items of
information:

1. How to declare the subroutine in a program

2. How to invoke it in a program

The notation used is that of the PL/I language. If you do not know
PL/I, the explanation of the relevant PL/I syntax and data types in
this section and the SUBROUTINE PARAMETERS section should enable you to
call these subroutines from other languages.

First Edition 1-2

**%.

OVERVIEW OF SUBROUTINES

UID$BT

Purpose

Returns a unique b i t s t r i n g for i den t i f i ca t ion purposes.

Usage

DCL UID$BT ENTRY (BIT (48) ALIGNED);

CALL UID$BT (unique_bit_string);

Parameters

unique__bit_string

OUTPUT. Unique bit string returned.

Discussion

The string is guaranteed to be unique. This bit string is not random;
it is formed by concatenating the current date and time (in FS format)
with a 16-bit counter. (The format of a 32-bit encoded FS-format date
is described in Appendix C.) If a random number is required rather
than a unique identifier, the applications library routine RAND$A
should be used.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

A Subroutine Description
Figure 1-1

1-3 First Edition

SUBROUTINES, VOLUME III

Subroutine Declarations

The following example shows a subroutine declaration:

DCL CNIN$ ENTRY(CHARACTER(*) , FIXED BIN, FIXED BIN);

DCL is the short form of DECLARE. The DECLARE statement is used to
declare all data types, including those involved in subroutines and
functions. CNIN$ is the subroutine name. ENTRY specifies that the
item being declared is an entrypoint in a subprogram external to the
program from which it is called.

The items in parentheses are the parameters of the subroutine. The
parameters indicate the data types required for each argument of the
subroutine.

Subroutine Calls

The following example shows a call to the subroutine declared above:

CALL CNIN$(buffer, char_count, actual_count);

PL/I does not distinguish between uppercase and lowercase characters.
In the Usage section of a subroutine description, lowercase letters
indicate the items that must be supplied by the user, both arguments
(actual parameters, as opposed to formal parameters) and data items.
These are described more fully in the Parameters section. Uppercase
letters indicate items that must be copied verbatim.

The CALL statement above invokes the subroutine CNIN$. The arguments
in parentheses correspond to the parameters in the subroutine
declaration. The variables or constants used as arguments in a call to
the subroutine must match the data types of the parameters in the
declaration. Here, the variable name must be a character string, while
key and code must be integers. A subroutine that has no parameters is
invoked simply by giving the CALL keyword and the name of the
subroutine:

CALL TONL;

First Edition 1-4

OVERVIEW OF SUBROUTINES

Function Declarations

The following example shows a function declaration:

DCL PWCHK$ ENTRY(FIXED BIN, CHAR(*) VAR) RETURNS(BIT(1));

The only difference between a function declaration and a subroutine
declaration is at the end of the DECLARE statement. The function
declaration contains the keyword RETURNS, followed by a returns
descriptor specifying the data type of the value returned by the
function. In this case, it is a logical or Boolean value — one that
equates to TRUE or FALSE.

Function Calls

A function is invoked when its name is used as an expression on the
right-hand side of an assignment statement. The following example
shows an invocation of the function declared above:

password_ok = PWCHK$(key, password);

The equal sign = is the assignment operator. password_ok is a logical
(Boolean) variable that is assigned the value returned by the call to
PWCHK$. key and password represent integer and character-string
values, respectively.

Functions Without Parameters

A function that takes no parameters is invoked with an empty argument
list. The DATE$ subroutine is declared as follows:

DCL DATE$ ENTRY RETURNS(FIXED BIN(31));

Its invocation looks like this

date_word = DATE$();

Note

Functions called from FTN programs require parameters

1-5 First Edition

SUBROUTINES, VOLUME III

SUBROUTINE PARAMETERS

Subroutines usually expect one or more arguments from the calling
program. These arguments must be of the data type specified in the
parameter list of the DECLARE statement, and must be passed in the
order expected. All standard Prime subroutines are written in FORTRAN,
PMA, or a system version of PL/I. Volume I discusses how to translate
the data types expected by these languages into other Prime languages.
A chart summarizing data type equivalents for all Prime languages is in
Appendix B of this volume.

You must provide the number of arguments expected by the subroutine.
If too few arguments are passed, execution causes an error message such
as POINTER FAULT or ILLEGAL SEGNO. If too many arguments are passed,
the subroutine ignores the extra arguments, but will probably perform
incorrectly. A small number of subroutines, such as IOA$, accept
varying numbers of arguments.

The Usage section of a subroutine description gives the data types of
the parameters. The Parameters section explains what information these
parameters contain and what they are used for. Each parameter
description in this section begins with a word in uppercase that
indicates whether the parameter is used for input or output:

• INPUT means that the parameter is used only for input, and that
its value is not changed by the subroutine.

• OPTIONAL INPUT refers to an input parameter that may be omitted.
See the section Optional Parameters later in this chapter.

• OUTPUT means that the parameter is used only for output. You do
not have to initialize it before you call the subroutine.

• OPTIONAL OUTPUT refers to an output parameter that may be
omitted. See the section Optional Parameters later in this
chapter.

• INPUT/OUTPUT means that the parameter is used for both input and
output. The argument you pass to it may be changed by the
subroutine.

• INPUT -> OUTPUT refers to a situation in which

1. The parameter, an input parameter, is a pointer.

2. The data item to which the pointer points is not a
parameter of the subroutine, but it is changed by the
subroutine.

• RETURNED VALUE is the value returned by a function. (It is not,
strictly speaking, a parameter.)

First Edition 1-6

OVERVIEW OF SUBROUTINES

• OPTIONAL RETURNED VALUE is the value returned by a subroutine
that can be called either as a function or as a procedure. See
the section Optional Returned Values later in this chapter.

Parameter and Returned-value Data Types

A PL/I parameter specification consists simply of a list of the data
types of the parameters. The data types you will encounter, both in
the parameter list and in the RETURNS part of a function declaration,
are the following:

CHAR(n) Also specified as CHARACTER(n), CHARACTER<n)
NONVARYING. Specifies a character string or array
of length n. A CHAR(n) string is stored as a
byte-aligned string, one character per byte. (A
byte is 8 bits.)

CHAR(*) Also CHARACTER(*), CHARACTER(*) NONVARYING.
Specifies a character string or array whose length
is unknown at the time of declaration. A CHAR(*)
string is stored as a byte-aligned string, one
character per byte.

CHAR(n) VAR Also CHARACTER(n) VARYING. Specifies a character
string or array whose length can be a maximum of n
characters. The first 2 bytes (one halfword) of
storage for a CHAR(n) VAR string contain an integer
that specifies the string length; these are
followed by the string, one character per byte.

CHAR(*) VAR Also CHARACTER(*) VARYING. Specifies a character
string or array whose length is unknown at the time
of declaration. The first 2 bytes (one halfword)
of storage for a CHAR(*) VAR string contain an
integer that specifies the string length; these
are followed by the string, one character per byte.

FIXED BIN Also FIXED BINARY, BIN, FIXED BIN(15). Specifies a
16-bit (halfword) signed integer.

FIXED BIN(31)

(n) FIXED BIN

Specifies a 32-bit signed integer.

An integer array of n elements. See below for more
information about arrays.

FLOAT BIN Also FLOAT BIN(23), FLOAT. Specifies a 32-bit
(one-word) floating-point number.

FLOAT BIN(47) Specifies a 64-bit (double-word) floating-point
number.

1-7 First Edition

SUBROUTINES, VOLUME III

BIT(l)

BIT<n)

POINTER

Specifies a logical (Boolean) value. A bit
of 1 means TRUE; a value of 0 means FALSE.

value

Specifies a bit string of length n.
means that the bit string is to be
halfword boundary.

BIT(n) ALIGNED
aligned on a

Also PTR. Specifies a POINTER data type. A
pointer is usually stored in three halfwords (48
bits). If the pointer only points to
halfword-aligned data, it may occupy two halfwords
(32 bits). The item to which the pointer points is
declared with the BASED attribute (for instance,
BASED FIXED BIN).

POINTER OPTIONS (SHORT)
Same as POINTER except that it always occupies only
two halfwords and can only point to
halfword-aligned data.

Note

When used as a parameter, POINTER can
generally be used interchangeably with
POINTER OPTIONS (SHORT).

When used as a returned function value,
POINTER OPTIONS (SHORT) can be used in any
high-level language except Pascal or 64V
mode C, which require returned pointers to
be three halfwords; in these cases,
POINTER must be used. C in 32IX mode
accepts only halfword-aligned, two-halfword
pointers, and therefore requires the use of
POINTER OPTIONS (SHORT).

Sometimes an argument is defined as an array or a structure,
declaration looks like this:

An array

DCL ITEMS(10) FIXED BIN;

Here, ITEMS is a ten-element array of integers. The keywords FIXED
BIN, however, can be replaced by any data type. In PL/I, by default,
arrays are indexed starting with the subscript 1; the first integer in
this array is ITEMS(1).

First Edition 1-8

OVERVIEW OF SUBROUTINES

An array with a starting subscript other than 1 is declared with a
range specification:

DCL WORD(0:1023) BASED FIXED BIN;

WORD is an array indexed from 0 to 1023, and its elements are
referenced by POINTER variables.

A structure is equivalent to a record in COBOL or Pascal. A structure
declaration looks like this:

DCL 1 FS^DATE,
2 YEAR BIT(7),
2 MONTH BIT(4),
2 DAY BIT(5),
2 QUADSECONDS FIXED BIN(15);

The numbers 1 and 2 indicate the relative level numbers of the items in
the structure. The name of the structure itself is always declared at
level 1. The level number is followed by the name of the data item and
its data type. In this example, the structure occupies a total of 32
bits. (Remember that a FIXED BIN(15) value occupies 16 bits of
storage.)

Since no names are given to data items in parameter lists, the array
declared above as ITEMS would be declared simply as (10) FIXED BIN.
Similarly, the structure FS_DATE would be listed as

1, 2 BIT(7), 2 BIT(4), 2 BIT(5), 2 FIXED BIN(15),

Optional Parameters

On Prime computers, some subroutines and functions are designed so that
one or more of their parameters, input or output, can be omitted.
Candidates for omission are always the last n parameters. Thus, if a
subroutine has a full complement of three parameters, it may be
designed so that the last one or the last two can be omitted; the
subroutine cannot be designed so that only the second parameter can be
omitted. The first parameter can never be omitted.

1-9 First Edition

SUBROUTINES, VOLUME III

In the Usage section of a subroutine description, any optional
parameters are enclosed in square brackets, as in the following
declaration and CALL statement:

DCL CH$FX1 ENTRY(CHAR(*) VAR, FIXED BIN(15) .
[, FIXED BIN(15)]);

CALL CH$FX1(string_to_convert, result
[, nonstandard_code]);

In some cases, parameters can be omitted because they are not needed
under the circumstances of the particular call. In other cases, when
the parameter is of type INPUT, the subroutine will detect the missing
parameter and will assume some value for it. For example, C1IN$,
described in this volume, can be called with one, two, or three
arguments:

CALL C1IN$ (char);
CALL C1IN$ (char, echo_flag);
CALL C1IN$ (char, echo_flag, term_flag);

If echo_flag is missing, the subroutine acts as if it had been supplied
with a value of "true." If term_flag is missing, the subroutine acts
as if it had been supplied with a value of "false."

In still other cases, the subroutine changes its behavior depending on
the presence of the parameter. For example, the subroutine CH$FX1
(described in this volume) uses its third argument to return an error
code. If the code argument is omitted and an error occurs, the routine
signals a condition instead.

If a parameter can be omitted, it is described as OPTIONAL INPUT or
OPTIONAL OUTPUT in the routine description. Most of the routines in
the Subroutines Reference Guide have no optional parameters.

Optional Returned Values

In the architecture of Prime computers, a subroutine that is designed
as a function can be called as a subroutine using the CALL statement.
Frequently this makes no sense. The statement

CALL SIN(45);

does nothing useful; the value that the SIN function returns is lost.
But, with functions that change some of their parameters as well as
return a value, the returned value can be useful in some contexts and

First Edition 1-10

OVERVIEW OF SUBROUTINES

not of interest in other contexts. Consider the function CL$GET,
described in this volume. It reads a line from the command device and,
in addition, returns a flag that indicates whether a command input file
is active. Most programs do not need to know whether a command input
file is active. They call CL$GET as a subroutine:

CALL CL$GET (BUFFER, 80, CODE);

A program interested in command input files, however, calls CL$GET as a
function:

COMISW - CL$GET (BUFFER, 80, CODE);

Note

In PL/I and Pascal, a given subroutine cannot be used both as a
subroutine and as a function within a single source module.

The Usage section of the subroutine descriptions gives both the
function invocation and the subroutine invocation for subroutines that
are likely to be called in both ways.

In the Parameters section, a routine that is designed as a function has
its returned value described as RETURNED VALUE if it is considered the
main purpose of the subroutine to return the value. If the function is
likely to be called as a subroutine — that is, if returning the value
is considered to be something that is needed only on some occasions —
the returned value is described as OPTIONAL RETURNED VALUE.

How to Set Bits in Arguments

Sometimes a subroutine expects an argument that consists of a number of
bits that must be set on or off.

A data item is stored in a computer as a collection of bits, which can
each have one of two values, off or on. On Prime computers, off is
arbitrarily equated to the bit value 'O'B or false, and on is equated
to 'l'B or true. (This is not the same as the FORTRAN values
.FALSE. and .TRUE., which are the LOGICAL data types and are really
integers.) When bits are stored as part of a group, however, the
position of the bit gives it a numeric value as well as the bit value
'l'B or 'O'B. Its position equates it to a power of 2. Consider an
argument that contains only two bits, represented in Figure 1-2.

1-11 First Edition

SUBROUTINES, VOLUME III

Bit 1 Bit 2

2**1 2**0

Values of Bit Positions — Two Bits
Figure 1-2

The low-order bit is in the position of 2 to the 0 power, and its
value, if the bit is on, is 1. The high-order bit is in the position
of 2 to the first power, and its value, if the bit is on, is 2. (If
the bit is off, its value is always 0.) By convention, the low-order
bit is called the rightmost bit and the high-order bit is called the
leftmost bit.

In an argument containing 16 bits, choose the bits that you want to set
on, compute their value by position, and add these values. The
resulting decimal value is what you should assign to the subroutine
argument for the options you want. You can pass an integer as an
argument that is declared as BIT(n) ALIGNED. The subroutine interprets
the integer as a bit string. For example, if you want to set the
sixteenth and the seventh bits, compute 2 to the 0 power plus 2 to the
ninth power, which amounts to 1 plus 512, or 513. Figure 1-3
illustrates values of bit positions in a 16-bit argument.

Bit 1 Bit 7 Bit 16

2**15 2**9 2**0

Values of Bits in a 16-bit Argument
Figure 1-3

Key Names as Arguments

In calls to many subroutines, data names known as keys can be used to
represent numeric arguments. The subroutine description explains which
key to use. Numeric values are associated with these keys in the UFD
named SYSCOM. The keys in SYSCOM are listed in Volume I.

Keys are of the form x$yyyy, where x is either K or A and yyyy is any
combination of letters. Keys that begin with K concern the file
system; those that begin with A concern applications library routines.

First Edition 1-12

OVERVIEW OF SUBROUTINES

Examples are:

K$CURR
A$DEC

For example, in the subroutine call

CALL GPATH$ (K$UNIT other arguments...);

the key K$UNIT stands for a numeric constant value expected by the
subroutine. If a subroutine expects key arguments/ the description of
that subroutine explains which keys to use in which circumstances.

Each language has its own files of keys. The chapters on individual
languages in Volume I explain how to insert these files into your
program. Key files have the pathnames

SYSCOM>KEYS.INS.language

for K$yyyy keys, and

SYSCOM>A$KEYS.INS.language

for A$yyyy keys, where language is the suffix for that language.

For more information about keys, see Volume I.

Standard Error Codes

Many subroutines include as an argument a standard error code, which is
similar to a key. The error code corresponds to an error message that
the subroutine can return to indicate that the call to the subroutine
succeeded or failed, or to report some other condition worth noting.

Standard error codes are of the form E$xxxx, where xxxx is any
combination of letters. For example, the error code

E$DVIU

corresponds to the error message The device is in use.•

1-13 First Edition

SUBROUTINES, VOLUME III

The standard error codes are defined in the UFD named SYSCOM. Like a
key file, the error code file for a particular language must be
inserted in the program that calls the subroutine. Each error code
file has the pathname

SYSCOM>ERRD.INS.language

where language is the suffix for that language. For explanations of
the standard error codes, see Volume 0 of the Advanced Programmer's
Guide. Volume I contains a listing of the standard error codes and the
messages to which they correspond.

Libraries and Addressing Modes

The Subroutines Reference Guide is organized to give a systematic
description of subroutine libraries — sets of routines, all broadly
dealing with the same subject, are grouped together. There is a
separate library for each of these subjects.

Prime computers offer several addressing modes to provide software
compatibility to the user. (For a discussion of addressing modes, see
the System Architecture Reference Guide.) To maintain this
compatibility, a given subroutine library normally exists in three
general versions: R-mode, V-mode, and V-mode (unshared). (See Chapter
2 of Volume I of the Subroutines Reference Guide for a discussion of
shared and unshared libraries.)

A program is compiled in one of the segmented modes (V-mode or I-mode)
or in the older R-mode. If the program is compiled in one of the
segmented modes, it may call library routines written in any of the
segmented modes. A single set of libraries is provided for all three
modes. If the program is compiled in either V-mode or I-mode, it
requires the suitable version of the library (normally a V-mode library
services both V-mode and I-mode programs). If the program is compiled
in R-mode, the program must use the R-mode version of that library.

Every routine description contains a section entitled Loading and
Linking Information, which describes how to access the routine from the
different modes.

Satisfying the References at Load Time

When the subroutines in this volume are called by a program, the
references must be satisfied when the compiled binaries are linked
together with BIND, SEG, or LOAD (the R-mode loader).

First Edition 1-14

OVERVIEW OF SUBROUTINES

This is accomplished by loading a Prime-supplied binary library using
the LI (for Library) command. The Loading and Linking Information
section under each routine description provides the information for up
to three loading choices:

• V-rnode or I-mode, with shared code. This is the preferred
method, as it allows many users of a system to share the same
copy of code.

• V-mode or I-mode with unshared code.

• R-mode.

For all the routines described in this volume, only the V-mode or
I-mode subroutines with unshared code require a special library. Both
the shared code and R-mode code require "no special action." This
means that the LI[brary] command with no arguments, which normally ends
a loading sequence, satisfies the references.

Getting the Subroutines at Runtime

When a subroutine is available to be shared among users, PRIMOS
postpones finding the code until runtime. (Other subroutines have
their code so linked with the program that they are called "unshared"
routines.) The program linked to shared subroutine code retains only
the name of the subroutine, and at runtime PRIMOS replaces the name
with the actual location of the shared code, thus completing the
connection. For the connection to happen, the code must be in one of
three places: in PRIMOS itself, in an executable program format (EPF)
library, or in a static-mode library. Furthermore, the user's ENTRY$
search list must contain a pathname to the library that holds the code,
unless the subroutine is located in PRIMOS.

If the Loading and Linking Information section indicates *'no special
action" for loading a subroutine library, then the code for this
subroutine is either in PRIMOS itself or in one of the two
Prime-supplied EPF libraries, SYSTEM_LIBRftRY.RUN or PRIMOSJLIBRARY.RUN.
The pathnames to these libraries must be in the system search rules.

Because many of the subroutines herein are providing PRIMOS services,
there is no way of providing them as unshared code, since PRIMOS by
definition is shared.

For a further description of libraries and related terminology, see
Volume I of the Subroutines Reference Guide.

1-15 First Edition

2
Core Operating

System Services

This chapter contains routines that provide core operating system
services to the programmer.

The first part of this chapter presents routines involving general
operating system information. The second part of this chapter
describes routines involving system information specific to the current
user.

2-1 First Edition

SUBROUTINES, VOLUME III

SYSTEM INFORMATION ROUTINES

This section describes the following subroutines:

Routine Function

ABSW Returns cold-start setting of ABBREV switch.

CKDYN$ Determines if routine is dynamically accessible.

CPUID$ Returns model number of Prime computer.

DATES Returns current date and time.

ERTXTS Returns text representation of error code.

GINFO Returns PRIMOS II information.

PRI$RV Returns operating system revision number.

RSEGAC$ Determines access to a segment.

USERS Returns user number and count of users.

First Edition 2-2

CORE OPERATING SYSTEM SERVICES

zgp\ ABSW

Purpose

This procedure returns the cold-start setting of the abbreviations
enable switch.

Usage

DCL ABSW ENTRY RETURNS (FIXED BIN);

ab_sw = ABSW ();

Parameters

ab_sw

RETURNED VALUE. Returns 1 if the command line abbreviation
expansion feature is globally enabled. Returns 0 if the feature is
globally disabled. If the feature is enabled, individual users may
still elect to disable it.

Discussion

This function cannot be called from FTN because it has no arguments

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

2-3 First Edition

SUBROUTINES, VOLUME I I I

CKDYN$

Purpose

This routine accepts a dynamic entrypoint (DYNT) name and determines
whether that routine is currently accessible through the PRIMOS dynamic
linking mechanism.

Usage

DCL ROUTINE_NAME ENTRY (CHAR (32) VAR, FIXED BIN);

CALL CKDYN$ (routine_jname, code);

Parameters

rout ine_name1

INPUT. The name of the dynamic entrypoint.

code

OUTPUT. Standard error code. Possible values are:

0 Dynamic entrypoint routine_name was found.

E$FNTF Dynamic entrypoint routine_name was not found.

Discussion

CKDYN$ looks for the entrypoint in PRIMOS, and in all executable
program format (EPF) libraries and static-mode shared libraries
currently listed in the user's ENTRY$ search list. If a library does
not appear in the ENTRY$ search list, its entrypoints are not
accessible to CKDYN$.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-4

• ^ ^ v

CORE OPERATING SYSTEM SERVICES

CPUID$

Purpose

This routine determines which Prime computer model the program is
running on.

Usage

DCL CPUID$ ENTRY (POINTER, FIXED BIN);

CALL CPUID$ (struc_ptr, code);

Parameters

struc_ptr

INPUT -> OUTPUT. This parameter points to a structure of user
memory with the following layout:

1 structure,
2 version fixed bin,
2 cpu_jmodel fixed bin (31),
2 microcode,

3 resl bit(8),
3 mfg_rev bit(8),
3 eng_rev fixed bin,

2 proc_options,
3 res2 bit(15),
3 info_series bit,

2 res3 bin(31),
2 res4 bin(31);

The fields are defined as follows:

version Input value. Specifies which version of the
structure the caller is expecting to receive.
Must be 1.

cpu_model Code value indicating the processor model
number. See Discussion below for a list of the
possible values.

resl Reserved.

mfg_rev Manufacturing revision number of microcode
installed.

2-5 First Edition

SUBROUTINES, VOLUME III CPUID$

eng_rev

res2

info_series

res3, res4

code

Engineering revision number of microcode
installed.

Reserved.

If 1, indicates the processor has special
microcode assist for Prime INFORMATION. If 0,
indicates the processor has no such microcode
assist.

Reserved.

OUTPUT. Standard error code. Possible values are:

0 No error.

E$BPAR version is not 1.

Discussion

At Rev 20.2, the following values can be returned in version:

Value

1
3
4
5
6
7
8
9
10
11
15
16
17
18
19
21
22
23
25
30
34

Processor model

P400 with rev A microcode, or
original P500
P400 with rev B or later microcode
P350
P250-II, P450, or P550-I
P750
Upgraded P500, or P650
P150, or P250-I
P850
1450-11
P550-II
P2250
P9950
P9650
P2550
P9955
P9750
P2350
P2655
P9655
P2450
P9955-II
P9755

First Edition 2-6

CPUID$ CORE OPERATING SYSTEM SERVICES

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Load SVCLIB.

2-7 First Edition

SUBROUTINES, VOLUME I I I

DATE$

Purpose

DATE$ returns the current date and time in binary format.

Usage

DCL DATE$ ENTRY RETURNS (FIXED BIN(31)) ;

fs_date = DATE$ ();

Parameters

fs_date

RETURNED VALUE. Standard FS-format date.

Discussion

DATE$ returns the current date and time in the standard bit-encoded FS
format. The FS format for dates is defined in Appendix C.

Loading- and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-8

CORE OPERATING SYSTEM SERVICES

ERTXT$

This routine accepts a standard PRIMOS error code and returns the
character string representation of its error message as it would be
printed by the routine ERRPR$.

Usage

DCL ERTXT$ ENTRY (FIXED BIN, CHAR (1024) VAR) ;

CALL ERTXT$ (code, errmsg);

Parameters

code

INPUT. Standard error code,

errmsg

OUTPUT. Text of error message.

Discussion

If code is not a valid error code, the null string is returned.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-9 First Edition

SUBROUTINES, VOLUME I I I

GINFO

Purpose

GINFO indicates whether or not the user program is running under PRIMOS
II. If so, GINFO shows where PRIMOS II is loaded in the user address
space.

Usage

DCL GINFO ENTRY ((6) FIXED BIN, FIXED BIN);

CALL GINFO (xervec, n);

Parameters

xervec

OUTPUT. Contains n halfwords <up to 6) as follows.

Information for PRIMOS II:

xervec Word Content

1 Low boundary of PRIMOS II buffers (77777 octal if
64K PRIMOS II).

2 High boundary of PRIMOS II (77777 octal if 64K
PRIMOS II).

3 Reserved.

4 Reserved.

5 Low boundary of PRIMOS II and buffer (64K for PRIMOS
II only).

6 High boundary of 64K PRIMOS II.

First Edition 2-10

GINFO CORE OPERATING SYSTEM SERVICES

Information for PRIMOS:

xervec Word Content

1 0

2 0

3-6 Reserved,

n

INPUT. Maximum number of words to return.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-11 First Edition

SUBROUTINES, VOLUME I I I

PRI$RV

Purpose

This subroutine returns the revision number of the currently running
PRIMOS operating system.

Usage

DCL PRI$RV ENTRY (CHAR(32)VAR);

CALL PRI$RV (prinios_rev) ;

Parameters

primos_rev

OUTPUT. A 32-character varying string containing the PRIMOS
revision number.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPPTNLB.

R-mode: No special action.

First Edition 2-12

CORE OPERATING SYSTEM SERVICES

RSEGAC$

Purpose

This routine is used to verify that a particular segment exists. It
also indicates the requester's access rights to the segment.

Usage

DCL RSEGAC$ ENTRY (FIXED BIN(15), FIXED BIN(31)) RETURNS (BIT(l));

seg_exists = RSEGAC$ (segno, access);

Parameters

segno

INPUT. The segment number,

access

OUTPUT. The first halfword is reserved.

If the segment exists, the value returned in the second halfword
indicates the user's access rights to the segment. Possible values
and their interpretations are:

0
1
2
3
4,5
6
7

seg_exists

No access.
Gate Access.
Read Access.
Read, Write Access.
Reserved.
Read, Execute Access.
Read, Write, Execute Access.

OPTIONAL RETURNED VALUE. PL/I true if the segment exists; false
if the segment does not exist.

Discussion

If the segment does not exist, the call elicits a return FALSE ('O'b).
If the segment exists, a TRUE ('l'b) is returned and the access value
for that segment is also returned in the access argument.

2-13 First Edition

SUBROUTINES, VOLUME III RSEGAC$

FORTRAN programs cannot directly call this subroutine, because it has a
seven-character name. A given program may indirectly call it, for
example, with CALL SYNYM (SEGNO, ACCESS), and at BIND time rename SYNYM
as RSEGAC$.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: No special action.

First Edition 2-14

CORE OPERATING SYSTEM SERVICES

USER$

Purpose

USER$ returns the user number and user count.

Usage

DCL USERS ENTRY (FIXED BIN, FIXED BIN);

CALL USERS (current__user_number, user_count);

Parameters

current_user_number

OUTPUT. User number of the process issuing the call.

user_count

OUTPUT. Total number of users logged into the system.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-15 First Edition

SUBROUTINES, VOLUME III

USER INFORMATION ROUTINES

This section describes the following subroutines:

Routine Function

ASSUR$ Checks process has given amount of time slice left

CHG$PW Changes login validation password.

COM$AB Expands a line using abbreviations preprocessor.

IDCHK$ Validates a name.

IN$LO Determines whether a forced logout is in progress.

LOGO$$ Logs out a user.

PRJID$ Returns the user's project identifier.

PTIME$ Returns amount of CPU time used since login.

PWCHK$ Validates syntax of a password.

READY$ Displays PRIMOS command prompt.

SID$GT Returns user number of initiating process.

SUSR$ Tests whether current user is supervisor.

TI$MSG Displays standard message showing times used.

TIMDAT Returns timing information and user identification,

UNO$GT Lists users with same name as caller.

UTYPE$ Returns user type of current process.

VALID$ Validates a name against composite identification.

First Edition 2-16

CORE OPERATING SYSTEM SERVICES

ASSUR$

Purpose

ASSUR$ allows a process to ensure it receives a certain amount of
uninterrupted CPU time before its time slice ends.

Usage

DCL ASSUR$ ENTRY (FIXED BIN) RETURNS (BIT ALIGNED);

waited = ASSUR$ (desired_time);

Parameters

de s i red_t ime

INPUT. Time requested, in milliseconds.

waited

^ OPTIONAL RETURNED VALUE. Set to TRUE Cl'b) if the process waited
in a queue before receiving the amount of time requested.

Discussion

ASSUR$ returns immediately if the desired_time is less than the time
remaining in the current time slice. ASSUR$ reschedules the process if
insufficient time is left in the current time slice.

If desired_time is greater than the time slice, the process obtains
only the maximum time slice, and no more.

This procedure should be used when a time-critical application needs to
use the CPU uninterrupted by other user processes. Time slices are
described in the Operators's Guide to System Commands.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

2-17 First Edition

SUBROUTINES, VOLUME III

CHG$PW

Purpose

CHG$PW changes the login validation password.

Usage

DCL CHG$PW ENTRY (CHAR(16)VAR, CHAR(16)VAR, FIXED BIN);

CALL CHG$PW (old_pw, new_pw, code);

Parameters

old_pw

INPUT. The user's current login validation password.

new_pw

INPUT. The new password desired. Passwords may contain any
characters except PRIMOS reserved characters (see the Prime User's '*%
Guide). Lowercase alphabetic characters are mapped to uppercase by '
CHG$PW. At the System Administrator's option, null passwords may
be disallowed.

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$BPAR One of the passwords is illegal.

E$BPAS The old password passed does not match the actual
password.

E$EXST The new password is the same as the old one.

E$WTPR The disk is write-protected.

Discussion

CHG$PW allows a user to change the login validation password. This is
the password that a user gives during the LOGIN command procedure.

/^V

First Edition 2-18

CHG$PW CORE OPERATING SYSTEM SERVICES

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-19 First Edition

SUBROUTINES, VOLUME I I I

COM$AB

Purpose

This procedure expands a line of text using the PRIMOS abbreviation
preprocessor.

Usage

DCL COM$AB ENTRY (CHAR(*)VAR, FIXED BIN, FIXED BIN);

CALL COM$AB (command, command_size, code);

Parameters

command

INPUT/OUTPUT. On input, contains the string to be expanded. On
output, contains the expanded string. The input value of command
should not be more than 1024 characters long.

command_size

INPUT. Maximum length of command.

code

OUTPUT. Standard error code. Possible values are:

0 Success.

E$TRCL Expanded line was longer than command_size and was
truncated.

Discussion

COM$AB expands command, which can contain any text, as though it were a
line typed at the ready prompt. COM$AB displays appropriate error
messages if there are problems with the abbreviations file, or the
output line is truncated. If abbreviations are turned off, command is
not changed. See the Prime User's Guide for more information on the
abbreviations preprocessor.

First Edition 2-20

COM$AB CORE OPERATING SYSTEM SERVICES

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

2-21 First Edition

SUBROUTINES, VOLUME I I I

IDCHK$

Purpose

This function checks that the name passed is a legal user or project
name. This means that the name must be between 1 and 32 characters
long, start with an uppercase letter, and contain only uppercase
letters, numbers, and the special characters . (period), $ (dollar
sign), and _ (underscore).

Usage

DCL IDCHK$ ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT (1)) ;

id_ok = IDCHK$ (key, id);

Parameters

key

INPUT. Restrictions on the name. Keys may be added together:

K$UPRC Mask id to uppercase before checking.

K$WLDC Allow wildcard characters in id. (See the Prime
User's Guide.)

id

K$NULL Allow null ids.

INPUT/OUTPUT. The name to check (input unless key is K$UPRC; in
that case, input/output).

id_ok

RETURNED VALUE. Set to PL/1 true Cl'b) if the name is valid given
the restrictions of the keys.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-22

CORE OPERATING SYSTEM SERVICES

IN$LO

Purpose

This routine is used to determine whether a forced logout is in
progress.

Usage

DCL IN$LO ENTRY RETURNS (BIT ALIGNED);

in_logout =» IN$LO () ;

Parameters

in_logout

RETURNED VALUE. Returns true ('l'b) if the process has received a
forced logout.

Discussion

If the process has an on-unit for the LOGOUT$ condition, it can
continue to run for a short time. This function returns true if the
process is in this state.

This function cannot be called from FTN because it has no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-23 First Edition

SUBROUTINES, VOLUME III

LOGO$$

Purpose

LOGO$$ logs out a user. The routine can be used by the supervisor
terminal (User 1) to log out any user, or a user program may log out
any process it may have started.

Usage

DCL LOGO$$ ENTRY (FIXED BIN, FIXED BIN, CHAR(32), FIXED BIN,
FIXED BIN(31), FIXED BIN);

CALL LOGO$$ (key, user, usrnam, unlen, reserv, code);

Parameters

key

INPUT. Operation to be performed. Possible values are the
following:

-1 Log out all users (supervisor only).

0 Log out self (same as LOGOUT command).

1 Log out specific user by number (same as LOGOUT -NN).

2 Log out specific user by name (supervisor or its
phantoms only).

user

INPUT. User number to be logged out. This value is examined only
if key is 1.

usrnam

INPUT. Name of user to be logged out; must correspond to number
supplied in user. This value is examined only if key is 2.

unlen

INPUT. Length of usrnam in characters. This value is examined
only if key is 2.

First Edition 2-24

LOGO$$ CORE OPERATING SYSTEM SERVICES

reserv

Reserved for future use.

code

OUTPUT. Standard error code. Possible values are:

0 No error.

E$BKEY Bad key.

E$BPAR Invalid number is specified in user.

E$BNAM usmam does not correspond to user.

E$NRIT Attempt to log out user with name different from
caller.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries

R-raode: No special action.

Load NPFTNLB.

2-25 First Edition

SUBROUTINES, VOLUME III

PRJID$

Purpose

This subroutine is part of the User Registration and Profiles system.
It returns the user's project name.

Usage

DCL PRJID$ ENTRY (CHAR(32)VAR) ;

CALL PRJIDS (project_id_name);

Parameters

project_id_name

OUTPUT. User's current project name.

Discussion

Trailing blanks on the project name are not returned. If the user is
logged into the default project, the returned name is DEFAULT.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 2-26

CORE OPERATING SYSTEM SERVICES

PTIME$

Purpose

This procedure reads the amount of CPU time the process has used since
login. It is a convenient alternative to TIMDAT if only CPU time is
required.

Usage

DCL PTIME$ ENTRY RETURNS (FIXED BIN(31));

elapsed_time = PTIME$ ();

Parameters

elapsed_time

RETURNED VALUE. Indicates the amount of CPU time the process has
used since login. The time is returned in units of 1.024
milliseconds.

Discussion

To determine how much CPU time is used during execution of some code
sequence, call PTIME$ before the code is executed and save the value;
then call PTIME$ after the code is executed. The difference between
the values is the time used.

Because this function has no parameters, it cannot be directly called
from FTN.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

2-27 First Edition

SUBROUTINES, VOLUME III

PWCHK$

Purpose

This function makes sure that the password supplied is a legal login
password.

Usage

DCL PWCHK$ ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT{1));

pw_ok = PWCHK$ (key, password);

Parameters

key

INPUT. An option to restrict values of password. Keys may be
added together:

K$UPRC Change password to uppercase before checking.

K$NULL Allow null passwords.

password

INPUT. Must be 1 to 16 characters long, and may not contain PRIMOS
reserved characters.

pw_ok

RETURNED VALUE. Set to PL/I true Cl'b) if the password is legal.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-28

CORE OPERATING SYSTEM SERVICES

READY$

Purpose

READY$ prints a PRIMOS command prompt (the "ready" message)

Usage

DCL READY$ ENTRY (BIT(16), FIXED BIN);

CALL READY$ (format, code);

Parameters

format

INPUT. Only the most significant bit is used; the rest are
reserved. If the most significant bit is 1, the brief form of the
prompt is displayed. If the most significant bit is 0, the long
form is displayed.

code

INPUT. Error code. If this value is greater than zero, the error
prompt is displayed. If the value is less than zero, the warning
prompt is displayed. If the value is zero, the normal prompt is
displayed.

Discussion

See the Prime User's Guide for a description of the command level
prompts. Note that no newline follows the brief forms of the prompts.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

2-29 First Edition

SUBROUTINES, VOLUME I I I

SID$GT /^

Purpose

This procedure returns the user number of the process that started the
current process.

Usage

DCL SID$GT ENTRY (FIXED BIN) ;

CALL SID$GT (s p a w n e r _ i d) ;

Parameters

spawner_id

INPUT. User number of the process that started the current
process.

Discussion

If the process that calls SID$GT is a phantom, spawner_id is the user
number of the user that started the phantom. If the process is a batch
job, spawner_id is the user number of the batch server, a special
process that manages the batch subsystem.

Interactive users have no spawner. If SID$GT is called by an
interactive user, spawner_id is zero.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 2-30

CORE OPERATING SYSTEM SERVICES

SUSR$

Purpose

SUSR$ determines whether the current process is the supervisor process
This is the process that runs at the operator console.

Usage

DCL SUSR$ ENTRY (BIT ALIGNED);

CALL SUSR$ <susr_flag);

Parameters

susr_flag

OUTPUT. Returns true ('l'b) if the process is the supervisor
process; otherwise returns false ('O'b).

Discussion

In current revisions of PRIMOS, the supervisor user is always User
number 1. This will not always be guaranteed to be so, and SUSR$
should be used to test for the supervisor.

Loading and Linking Information

V-mode and I-rnode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

2-31 First Edition

SUBROUTINES, VOLUME I I I

TI$MSG ^

Purpose

TI$MSG types a standard format message that displays elapsed time, CPU
time, and I/O time. The standard format is that used by PRIMOS during
logout or in response to the TIME command.

Usage

DCL TI$MSG ENTRY (FIXED BIN, FIXED BIN(31), FIXED BIN<31),
FIXED BIN(31));

CALL TI$MSG (reserv, connect, cpu, io);

Parameters

reserv

INPUT. This value is not used,

connect *^%

INPUT. Clock time elapsed since login (connect time), in minutes,

cpu

INPUT. CPU time used, in seconds,

io

INPUT. I/O time used, in seconds.

Discussion

All the parameters are input parameters. The user must provide the
values that the procedure formats and types.

An example of the way this routine can be used is to call LON$R (see
Chapter 5) and print the returned values.

First Edition 2-32

TI$MSG CORE OPERATING SYSTEM SERVICES

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

2-33 First Edition

SUBROUTINES, VOLUME III

TIMDAT

Purpose

TIMDAT returns the date, time, CPU time, and disk I/O time used since
login, the user's unique number on the system, and the user-id in a
structure.

Usage

DCL TIMDAT (1..., FIXED BIN);

CALL TIMDAT (struc, num);

Parameters

struc

OUTPUT, A structure of the following elements:

2 date char<6),
2 time,

3 minutes fixed bin,
3 seconds fixed bin,
3 ticks fixed bin,

2 CPU_time,
3 seconds fixed bin,
3 ticks fixed bin,

2 IO_time,
3 seconds fixed bin,
3 ticks fixed bin,

2 ticks_per_sec fixed bin,
2 user_number fixed bin,
2 user_name char(32);

Current date in MMDDYY format.

Time in minutes since midnight.
Seconds passed after the minute.
Ticks passed after the second.

CPU time used in seconds.
CPU ticks passed after the second.

Disk I/O time used in seconds.
Disk I/O ticks passed after the
second.
Number of ticks per second.
User number.
User login name.

num

INPUT. Indicates maximum number of halfwords to be returned,
this number is more than 28, only 28 halfwords are returned.

If

First Edition 2-34

TIMDAT CORE OPERATING SYSTEM SERVICES

Discussion

This routine does not return any useful information under PRIMOS II.

Disk I/O time is from start of seek to end of transfer, including both
explicit file I/O and paging operations. Processor time used in
controlling the transfer is counted under CPU time.

FORTRAN programmers should declare the structure as an array of 28
sixteen-bit integers.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-35 First Edition

SUBROUTINES, VOLUME III

UNO$GT

Purpose

This procedure lists all the processes with the same user name as the
calling user.

Usage

DCL UNO$GT ENTRY ({*)FIXED BIN, FIXED BIN, FIXED BIN);

CALL UNO$GT (id_list, max_ids, num_ids);

Parameters

id_list

OUTPUT. An array of 16-bit integers that contains the user numbers
of processes that have the same user name as the calling user.

max_ids

INPUT. The maximum length of id_list.

num_ids

OUTPUT. The number of values stored in id_list•

Discussion

If the number of processes with the same name is greater than max_ids,
only max_ids values are stored. If this happens, there is no
indication of the error.

The calling user's process number is not among those returned.

First Edition 2-36

UNO$GT CORE OPERATING SYSTEM SERVICES

^ Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

2-37 First Edition

SUBROUTINES, VOLUME I I I

UTYPE$

Purpose

UTYPE$ returns the user type of the current process.

Usage

DCL UTYPE$ ENTRY (FIXED BIN);

CALL UTYPE$ (user_type);

Parameters

user_type

OUTPUT. Type of the process making the call. User types are
defined below.

Discussion

UTYPE$ returns the user type of the current process. The user type
identifies the process by certain classes defined below. It is the
preferred method of determining whether or not a given process is a
phantom.

These type definitions are inserted into a source by means of the
INCLUDE command, as discussed for each language in Volume I. The
definitions are provided for FORTRAN, PL/I, and PMA in the following
files:

SYSCOM>USER_TYPES.INS.FTN
SYSCOM>USER_TYPES.INS.PLl
SYSCOM>USER_TYPES.INS-PMA

Users who program in other languages such as Pascal or C should rewrite
the SYSCOM file for their languages. The names in this file may not be
used in COBOL, as they contain dollar signs. A COBOL program should
use the numeric values instead of names.

First Edition 2-38

UTYPE$ CORE OPERATING SYSTEM SERVICES

Possible user types are:

U$NORM Local terminal user.

U$TREM User gone to a remote system.

U$FREM User from a remote system.

U$THRU User logged through (both to and from remote).

U$SUSR Supervisor (User 1).

U$TFAM FAM I running at a user terminal.

U$PH Cominput-style phantom.

U$CPH CPL-style phantom.

U$NPX Slave process.

U$PFAM FAM I running as a phantom.

U$NET Network server process (NETMAN).

U$RTS Route-through server process.

U$FORK Primix Forked process.

U$LSR Login Server.

U$LOIP Logout in progress.

U$BACH Batch phantom.

Types UNPX, UNET, U$RTS, and U$LSR do not occur in processes that run
user programs; they are special process types reserved for use by
PRIMOS.

Types U$TFAM and U$PFAM do not occur in new versions of PRIMOS.

There are also four special types that mark the ranges of terminal and

nonterminal (phantom) users. These markers are:

U$LTUT Lowest terminal user type.

U$HTUT Highest terminal user type.

U$LPUT Lowest phantom user type.

U$HPUT Highest phantom user type.

2-39 First Edition

SUBROUTINES, VOLUME III UTYPE$

By using these marker types, callers can avoid having to change the
range they check when new types are added to the list.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-rnode: No special action.

First Edition 2-40

CORE OPERATING SYSTEM SERVICES

VALID$

Purpose

This routine validates a string against the user's composite
identification.

Usage

DCL VALID$ ENTRY (CHAR(32)VAR, FIXED BIN) RETURNS (BIT(l));

id_valid = VALID$ (name, code);

Parameters

name

INPUT. Identification to be checked,

code

OUTPUT. Standard error code. Possible values include:

0 Routine successfully called.

E$BID name is not a legal identifier. The value of name
must be a valid login name or ACL group name.

id_valid

RETURNED VALUE. Set to true ('l'b) if name is either the user's
login name or is one of his ACL group names.

Discussion

VALID$ checks an arbitrary string against a combination of the user's
login name and ACL groups (the user's composite identification). This
routine is used by the File ACL system to determine whether the current
user matches some "idiaccess" pair. The routine is, however, not
directly related to the file system and may be of use in another
context.

2-41 First Edition

SUBROUTINES, VOLUME III VALID$

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 2-42

3
User Terminal I/O

This chapter describes procedures that perform input and output on the
user's main terminal/ as well as procedures for controlling terminal
interaction.

The first part of this chapter describes routines used for handling
input. For interactive users, input is from the user terminal. By
issuing the COMINPUT command (see the Prime User7 s Guide) or calling
the COMI$$ procedure, you can switch input so that it originates from a
file. See below for more information on the way the system uses a
command input file.

The second part of this chapter describes routines used for handling
output. Output is normally to the user terminal, but if the user
issues the COMOUTPUT command (see the Prime User's Guide) or calls the
COMO$$ procedure, output goes to a file, either exclusively or in
addition to the terminal. This section includes a number of routines
that are used to build, piece by piece, a line of formatted output.
This technique is now obsolete; use IOA$, which is described in this
chapter, to perform free-format output.

The third part of this chapter describes routines used to control user
terminal I/O.

3-1 First Edition

SUBROUTINES, VOLUME III

COMMAND INPUT FILES

There are four situations concerning input from the user terminal:

• If an interactive user starts a program from the terminal,
routines accepting input read from the terminal.

• If a command input file is in control and starts a program, most
routines accepting input read from the command input file.
However, some routines read from the terminal when a command
file is in control, giving the programmer the option of reading
from the terminal under all circumstances. The individual
routine descriptions describe which routines offer this choice.
The person writing the command input file must know that the
program will be requesting input. If the program attempts to
read past the end of the file, the COMI_EOF$ condition is
raised.

• If a CPL program is in control and executes a program, the
result depends on whether or not a command input file executed
the CPL program. If a command input file did execute the CPL
program, input is read from the file as in the second case
above. If no command input file is in control, input is always
taken from the terminal.

• If a CPL program is in control and issues a &DATA command, the
lines in the &DATA block are copied to a temporary file, which
becomes a command input file. As in the second example, the *^\
programmer retains the option of reading from the terminal by
choosing the appropriate routines. If the program reads past
the end of the temporary command input file, the CPL interpreter
catches the COMI_EOF$ condition, issues an appropriate error
message, and stops running the CPL file. This event can be
avoided by putting the &TTY directive at the end of the &DATA
block. The &TTY directive instructs CPL to switch back to the
original source of data.

In summary, the program can pick up terminal input in the following
ways:

• When run directly by an interactive user

• When run from a CPL program

• When run from a &DATA group within a CPL program, if the &DATA
group has a &TTY directive

• By using one of the routines that pick up only terminal input

The program can pick up input from a command input file in the
following ways:

First Edition 3-2

USER TERMINAL I/O

• When run from a command input file

• When run from a &DATA group inside a CPL program

The next section discusses the restrictions on phantom process input.

PHANTOM INPUT AND OUTPUT

In this section, information about phantom processes also applies to
batch jobs. Phantom processes have no controlling terminal. Attempts
to read input from a terminal fail, so phantom processes must read
their input from a command input file. Output is discarded unless the
user has activated a command output file using the COMOUTPUT command or
the COMO$$ routine.

A phantom process may attempt to read from the nonexistent terminal.
It might call one of the routines that reads unconditionally from the
terminal. It might attempt to read a command input file when no
command input file is open. In either case, PRIMOS prints an error
message on the supervisor terminal, and logs out the phantom process.

ASSIGNED LINES

This volume only describes character input and output on the user login
terminal. Volume IV of the Subroutines Reference Guide describes
character input and output on an assigned line. Assigned lines control
those terminals and other character-oriented devices not intended for
user login.

SINGLE-CHARACTER ARGUMENTS

Some of the routines in this chapter have one or more arguments that
are declared as "(2)CHAR". In each case, only the second character is
used. The argument can be declared as a 16-bit integer, if this is
more convenient for the programmer. If it is, the actual character
argument consists of the least significant 8 bits of the integer. This
technique is intended to make the routines easy to use from FTN
programs.

If the argument is of type INPUT, the first character (or most
significant 8 bits of the integer) is ignored. If the argument is of
type OUTPUT, the first character is set to 8 zero bits.

The routines of this type are:

CI IN
C1IN$
C1NE$

TUN
TlOU
ERKL$$

3-3 First Edition

SUBROUTINES, VOLUME III

USER TERMINAL INPUT ROUTINES

This section describes the following subroutines

Routine Function

C1IN Reads a character.

ClIN$ Reads a character.

C1NE$ Reads a character, suppressing echo.

CL$GET Reads a line.

CNIN$ Reads a specified number of characters

COMANL Reads a line into a PRIMOS buffer.

RDTK$$ Parses a command line.

TUB Reads a character (function) .

TUN Reads a character (procedure) .

TIDEC Reads a decimal number.

TIHEX Reads a hexadecimal number.

TIOCT Reads an octal number.

<^\

First Edition 3-4

USER TERMINAL I/O

C1IN

Purpose

This routine gets the next character either from the terminal or from a
command file, depending upon the command stream source.

Usage

DCL C1IN ENTRY ((2)CHAR);

CALL C1IN (char);

Parameters

char

OUTPUT. Two-byte string into which the character is placed.

Discussion

The next character is read or loaded into char(2), and char(1) is set
to all zero bits. If the character is RETURN, char(2) is set to
NEWLINE.

If char is declared as a FIXED BIN integer, or the equivalent in other
languages, this routine loads the character into the least significant
8 bits of the integer, and sets the most significant 8 bits to zero.

Line feeds are discarded by the operating system and are not read by
the C1IN subroutine.

Use C1IN$ or TUN if there is a requirement to read from the user
terminal rather than a command file, even when a command file is
active.

If input is from a command input file, and terminal output has not been
switched off by the COMO$$ procedure or the COMOUTPUT command, the
character is echoed on the terminal. This is the only difference
between C1IN and C1NE$. C1NE$ does not echo such characters to the
terminal.

3-5 First Edition

SUBROUTINES, VOLUME III C1IN

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-6

USER TERMINAL I/O

C1IN$

Purpose

This routine gets the next character either from the terminal or from a
command file, depending upon the command stream source and the value of
term—flag.

Usage

DCL C1IN$ ENTRY ((2)CHAR [, BIT ALIGNED [, BIT ALIGNED]]);

CALL C1IN$ (char [, echo_flag [, term_flag]]);

Parameters

char

OUTPUT. Two-byte string into which the character is placed.

echo_flag

OPTIONAL INPUT. If true ('l'b), and input is from a command file,
the character is echoed to the terminal. If echo_flag is missing,
the assumed value is true.

term_flag

OPTIONAL INPUT. If true ('l'b), input is taken from the terminal
regardless of whether or not a command file is active. If
term_flag is missing, the assumed value is false.

Discussion

The next character is read into char(2), and char(1) is set to all zero
bits. If the character typed is RETURN, char(2) is set to NEWLINE.

Calling C1IN$ with echo_flag and term_flag omitted is equivalent to
calling C1IN (see previous description).

In V-mode and I-mode, calling C1IN$ with term_flag true is equivalent
to calling TUN (see later in this chapter) . However, C1IN$ is
implemented more efficiently than TUN. Use C1IN$ in preference to
TUN if efficiency is more important than the slightly more complicated
calling sequence of C1IN$.

3-7 First Edition

SUBROUTINES, VOLUME III C1IN$

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 3-8

USER TERMINAL I/O

C1NE$

Purpose

This routine gets the next character either from the terminal or from a
command file, depending upon the command stream source. If a command
input file is active, the character is not echoed to the terminal.

Usage

DCL C1NE$ ENTRY ((2)CHAR);

CALL C1NE$ (char);

Parameters

char

OUTPUT. Two-byte string into which the character is placed.

Discussion

The next character is read or loaded into char<2), and char(1) is set
to all zero bits. If the character is RETURN, char(2) is set to
NEWLINE.

If input is from a command input file, the character is not echoed to
the terminal. This is the only difference between C1NE$ and C1IN.
C1IN does echo all such characters to the terminal.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3-9 First Edition

SUBROUTINES, VOLUME III

CL$GET

Purpose

CL$GET reads a single line of input text from the currently defined
command input stream (terminal or command file).

Usage

DCL CL$GET ENTRY (CHARACTER(*)VARYING, FIXED BIN, FIXED BIN)
RETURNS (FIXED BIN);

comi_switch = CL$GET (comline, comline_size, code);

Parameters

comline

OUTPUT. Varying character string into which the text is read from
the command input stream. Because comline is of type character
varying, no blanks or zeroes are added beyond the last character
read.

comline_size

INPUT. Maximum length (in characters) of comline.

code

OUTPUT. Standard error code.

comi_switch

OPTIONAL RETURNED VALUE. Zero if input was read from the user
terminal, and nonzero if input was read from a file.

Discussion

The line is returned as a varying character string without the NEWLINE
character at the end. An empty command line returns the null string,
but one consisting of all blanks is handled as a command line
containing ordinary characters.

The user's erase and kill characters are processed by CL$GET. CL$GET
is preferable to CNIN$ for most purposes. Most applications programs
do not perform their own erase and kill processing.

First Edition 3-10

CL$GET USER TERMINAL I/O

Example

Below is an example using the subroutine CL$GET.

OK, SLIST CLGET1.PASCAL

{<readtty.pascal> Reads text from the user terminal using the external
{ PRIMOS routine CL$GET
{
{This program provides an example of how to implement the Pascal
{equivalent of the character varying datatype found in PL/I. The
{Prime Pascal extension STRING data type has the same structure
{as the CHARACTER VARYING type. The default length of a STRING
{variable is 80. The Prime extension STRING functions LENGTH and
{SUBSTR are identical to the PL/I functions of the same names.
{
{The simple object of the program is to read three strings from the
{terminal and display them in complete reverse order.
{
program readTTY;

type
char80varying = string; {Can also be declared as string[80]}

var
cmdline : char80varying;
table : array[1..3] of char80varying;
i, j : integer;
code : integer;

procedure cl$get (var cmdline: char80varying;{Command line input buffer}
lenbytes: integer; {Length of cmdline in bytes}

var code : integer); {Return error code status }
extern; {External PRIMOS procedure}

begin
{Loop to input the text entered from the user terminal using the }
{PRIMOS routine defined above (cl$get). }
{ }
for i := 1 to 3 do
begin
write(i:l,'> ') ;
cl$get(cmdline, 80, code);
if code <> 0 then
writeln('Bad status code returned, status =',code);

table[i] := cmdline; {Save the command line}
end;
writeln;
{ Display the lines just typed in reverse order}

3-11 First Edition

SUBROUTINES, VOLUME III CL$GET

for i := 3 downto 1 do
begin
write(i:l,'< ') ;
for j := length(table[i]) downto 1 do
write(substr{table[i], j, 1>);

writeln;
end;

end.

This program, stored as CLGETl.PASCAL, can be compiled, loaded, and run
with the following dialog:

OK, PASCAL CLGETl
[PASCAL Rev. 20.2 Copyright <c) 1986, Prime Computer, Inc.]
0000 ERRORS [PASCAL Rev. 20.2]
OK, BIND
[BIND Rev. 20.2 Copyright (c) 1985, Prime Computer, Inc.]
: LP CLGETl
: LI PASLIB
: LI
BIND COMPLETE
: FILE
OK, RESUME CLGETl
1> ABCDE
2> SECOND
3> MADAMIMADAM

3< MADAMIMADAM
2< DNOCES
1< EDCBA
OK,

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPPTNLB,

R-mode: Not available.

First Edition 3-12

USER TERMINAL I/O

CNIN$

Purpose

This subroutine is the raw-data mover used to move a specified number
of characters from the terminal or command file to the user program's
address space.

Usage

DCL CNIN$ ENTRY (CHARACTER(*), FIXED BIN, FIXED BIN);

CALL CNIN$ (buffer, char_count, actual_count);

Parameters

buffer

OUTPUT. A buffer in which the string of characters read from the
input stream is to be placed.

char_count

INPUT. The number of characters to be transferred from the input
stream to buffer.

actual_count

OUTPUT. A returned argument. It specifies the number of
characters read by the call to CNIN$. If reading continues until a
NEWLINE character is encountered, the count includes the NEWLINE
character.

Discussion

CNIN$ reads from the input stream until either a NEWLINE character is
encountered or the number of characters specified by char_count is
read. If an odd number of characters is read, the remaining character
space in the last halfword is not modified. The erase and kill
characters are not interpreted.

Input to CNIN$ is obtained from the terminal unless the process is
reading from a CPL &DATA block, or the user has previously given the
COMINPUT command, and this command is still in control. The COMINPUT
and &DATA commands switch the input stream so that it comes from a file

3-13 First Edition

SUBROUTINES, VOLUME III CNIN$

rather than from the terminal. A phantom can only read commands from
its command file. (Refer to the Prime User's Guide for further
information.)

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-14

USER TERMINAL I/O

COMANL

Purpose

COMANL causes a line of text to be read from the terminal or from a
command file/ depending upon the source of the command stream.

Usage

DCL COMANL ENTRY;

CALL COMANL;

Parameters

There are no parameters.

Discussion

The line is read into an internal text buffer. This buffer is internal
to PRIMOS and can be accessed only by a call to RDTK$$. The buffer
holds 80 characters.

Use of COMANL and RDTK$$ to read parameters is obsolete in PL/I and
Pascal. The preferred method is to use CL$GET and CL$PIX.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-15 First Edition

SUBROUTINES, VOLUME I I I

RDTK$$

Purpose

RDTK$$ parses the command line most recently read by a call to COMANL.
If no previous calls to COMANL have taken place, RDTK$$ parses the last
command line typed at PRIMOS command level by the user. RDTK$$ is
obsolete; CL$PIX should be used instead.

Usage

DCL RDTK$$ ENTRY (FIXED BIN, (8) FIXED BIN, CHAR(*), FIXED BIN,
FIXED BIN); •

CALL RDTK$$ (key, info, buffer, buflen, code);

Parameters

key

INPUT. The action to be taken by RDTK$$. Possible values are:

1 Read next token, convert to uppercase.

2 Read next token, leave in lowercase.

3 Reset token pointer to start of command line.

4 Read remainder of command line as raw text.

5 Erase the command line.

info

OUTPUT. An eight-haIfword integer array set to contain the
following information (only info(2) is set for a key value 4):

info(l) The type of the token. Possible values are:

1 Normal token. (Results of numeric
conversions are returned.)

2. Register setting parameter.

5 Null token.

6 End of line.

First Edition 3-16

RDTK$$ USER TERMINAL I/O

info(2) The length in characters of the token. A null token
has a 0 length.

info(3) Further information about the token. The following
bits of info(3) have the indicated meaning when set:

bit 1 (: 100000) — Decimal conversion
successful (no overflow), value
returned in info(4).

bit 2 (:040000) — Octal conversion
successful, value returned in info(5).
This bit is always set when token type
is 2.

bit 3 (: 020000) — Token begins with unquoted
minus sign, thus token can be a keyword
argument.

bit 4 (:010000) — An explicit position for a
register setting was given; position
value is returned in info(4).

bits 5-16 Reserved.

info(4) Contents depend on flags set in info(3). If bit 4
is set, info(4) is the position number for the
register setting. (Note that if token type is 2 and
bit 4 is not set, the position is implicit and must
have been remembered by the caller.) If bit 1 is
set, info(4) is the converted decimal value.
Otherwise info(4) is undefined.

info(5) Contents depend on flags in info(3). If bit 2 is
set, info(5) is the converted octal value.
Otherwise info(5) is undefined.

info(6)-(8) Reserved.

buffer

OUTPUT. A character string into which the literal text of the
token is written by RDTK$$ and blank-padded to length buflen, in
halfwords.

buflen

INPUT. The specified length (in halfwords) of buffer, buflen must
be >= 0.

3-17 First Edition

SUBROUTINES, VOLUME III RDTK$$

code

OUTPUT. Standard error code. Possible values are:

0 No errors.

E$BKEY Value of key is illegal.

E$BPAR Bad parameter; buflen is less than 0.

E$BFTS Value of buflen is too small to contain the full text
of the token. The token is truncated.

Discussion

RDTK$$ is obsolete. CL$PIX should be used instead for parsing lines
read using CL$GET. CL$PIX should also be used for parsing the command
lines of EPF (Executable Program Format) programs. For other cases,
you can recover the whole line with RDTK$$, using key value 4, convert
it to type character varying, and analyze it using CL$PIX.

Parsing proceeds token by token. A command line consists of tokens
(for definitions, see Tokens section later in this chapter) separated
by delimiters. The current delimiters are:

space comma /* NEWLINE

The reserved characters in command lines are:

([{)] } ! ; A " ? : ~ | \ .DEL.

However, you can include one of these characters in a token by
enclosing the token in single quotes; for example, 'awful(so to
speak)'. The /* characters, if unquoted, begin a comment field that
extends to the end of the line and are ignored by RDTK$$.

Each call to RDTK$$ reads a single token from the command line. RDTK$$
returns the literal text of the token, together with some additional
information about it. If the token is numeric, RDTK$$ provides results
of decimal and octal conversion attempts. RDTK$$ also informs the
caller if a numeric token can be interpreted as a register setting
(octal parameter) under the old PRIMOS command line structure.

First Edition 3-18

RDTK$$ USER TERMINAL I/O

Delimiters: Delimiter characters have four functions: token
separation, content indication, literal text delineation, and line
termination. The set of delimiter characters is:

SP , ' NL /*

The meanings of these characters are discussed in the next paragraphs.

Blank Interpretation (SP): A single blank terminates a token. A
multiblank field is precisely equivalent to a single blank. Blanks
surrounding another delimiter are ignored. Leading and trailing blanks
on the command line are ignored.

Comma Interpretation: A single comma terminates a token and is
equivalent to a blank. Two or more commas in succession, however,
generate null tokens. If a comma is the first or last character on the
command line, a null token is generated. A command line consisting of
only n commas (with no text) generates n+1 null tokens.

Literal Text Character ('): Literal text strings start and end with a
single quote mark. Any characters, including delimiters but excluding
a NEWLINE, can appear inside a literal string; the entire string is
treated as a single token. Rules for literal quote marks are the same
as in COBOL or FORTRAN: each literal quote mark in the string must be
doubled:

'HERE' ' S A LITERAL " .'

A token can be partially literal, for example, ABC'DEF'. Numbers in
literal text are interpreted as textual characters. (See token
definitions below.) A literal string is ended either by a single quote
mark or by a NEWLINE.

Newline Delimiter (NL): A NEWLINE character terminates the preceding
token. If the NEWLINE is in a literal text field, the literal is
terminated. If a NEWLINE is encountered before any token text or
delimiter, an end-of-line token is generated.

Comment Delimiter (/*): When the character pair /* is encountered, all
subsequent text on the command line is ignored. A /* at the beginning
of a command line causes an immediate end-of-line token to be
generated.

3-19 First Edition

SUBROUTINES, VOLUME III RDTK$$

Tokens

A token is any string of characters not containing a delimiter. A
token can be from 0 to 80 characters in length. The following are
examples of valid tokens:

FTN
LONG-FILENAME
1/707
6
98
String.even.longer.than.thirty-two.characters
[path]name
.NULL, (null string)

Literal text 'including delimiters can be entered in quote marks using
FORTRAN rules:

'STRING WITH EMBEDDED BLANKS'
'HERE"S A LITERAL QUOTE MARK'

Token Types

Associated with each token is a type. Possible token types are
discussed in the following paragraphs.

Normal Token: A normal token is any string of characters except a
register-setting token. The string may or may not include literal
text. Examples of normal tokens are:

FTN
AOOOl
T h i s . i s . a . t o k e n .
PARTIALLY' L I T E R A L '
' 8 ' x x x (Note: ' 8 ' i s t r e a t e d as a nonnumeric.)

<= ' ") r r i i i i i r

Register-setting Token: Register-setting tokens, or octal parameters
(explained in the LOAD and SEG Guide), are now considered obsolete.
They are handled by RDTK$$ solely to permit existing software and
command files to continue to function. New software should not use
such parameters; symbolic keywords should be used instead: for
example, FTN XX -64V instead of FTN XX 2/400.

First Edition 3-20

RDTK$$ USER TERMINAL I/O

The rules for recognition of a register-setting parameter are as
follows. A token of the form octal/octal is always recognized as a
register setting (unless enclosed in quotes). Initially, unembellished
octal integers are also recognized as implicit-position register
settings. If a token begins with an unquoted minus sign, and does not
successfully convert as a decimal integer, recognition of
implicit-position register settings is disabled. Recognition is
reenabled only by a subsequent occurrence of an explicit-position
register setting: for example, octal/octal.

Null Token: A null token is generated when two delimiters are
encountered in a row (except for multiple context characters). The
following are examples of command lines generating null tokens:

, (Start of line is a delimiter in this case.)

X,,Y

End-of-line Token: This token is generated when the end of the command
line is reached.

Strategy

RDTK$$ maintains an internal pointer that points to the next character
in the command line to be scanned. This pointer is set to the start of
the command line by COMANL. It can also be reset to the start of the
line with a RESET (key=3) call to RDTK$$.

Following a PRIMOS command, the internal pointer is positioned after
the main command. If RESUME was the command, it is positioned after
the RESUME filename.

Regardless of the token type, RDTK$$ always returns the literal text of
the token. Delimiter characters (unless inside quote marks) are never
returned.

If a token is truncated (too long to fit in buffer), the next call to
RDTK$$ returns the next token, not the truncated text.

For register-setting tokens (octal parameters), the octal position
number is returned by RDTK$$ only if explicitly given in the token (for
example, 6/123). Hence, the current register-setting position must be
remembered by the caller.

A buflen of 0 can be used to skip over a token. The error code ESBFTS
is returned.

3-21 First Edition

SUBROUTINES, VOLUME III RDTK$$

For a key of 4 (read raw text), all text between the current RDTK$$
pointer and the end of the command line (NEWLINE) is returned. No
checking is done for any delimiters or special characters other than
NEWLINE. No forcing to uppercase is performed.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-22

USER TERMINAL I / O

T1IB

Purpose

TUB reads one character from the user terminal.

Usage

DCL TUB ENTRY RETURNS (FIXED BIN) ;

charval = TUB ();

Parameters

charval

RETURNED VALUE. Input character.

Discussion

charval contains the binary equivalent of the character just read.
charval must be declared as a 16-bit integer, not as a character
string.

This function always reads from the terminal. Use C1IN if there is a
requirement to read a character from an active command input file.

This function cannot be called from FTN, as it has no parameters. Use
C1IN$ or TUN instead.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-23 First Edition

SUBROUTINES, VOLUME I I I

T1IN

Purpose

TUN reads one character from the user terminal.

Usage

DCL TUN ENTRY ((2) CHAR);

CALL TUN (char) ;

Parameters

char

OUTPUT. Two-byte string into which the character is placed.

Discussion

The next character is read or loaded into char(2), and char(1) is set
to all zero bits. If a RETURN is read, a NEWLINE is output and char is
set to NEWLINE. If a LINEFEED (NEWLINE) character is read, it is
discarded by PRIMOS.

If char is declared as a FIXED BIN integer, or the equivalent in other
languages, this routine loads the character into the least significant
8 bits of the integer, and sets the most significant 8 bits to zero.

Use ClIN if there is a requirement to read from an active command file.

The routine C1IN$ (described earlier in this chapter) is also capable
of forcing input to come from the terminal, and is implemented more
efficiently than TUN. Use C1IN$ in preference to TUN if efficiency
is more important than the slightly more complicated calling sequence
of C1IN$.

First Edition 3-24

TUN USER TERMINAL I/O

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-25 First Edition

SUBROUTINES, VOLUME I I I

TIDEC

Purpose

TIDEC reads terminal input as a decimal number.

Usage

DCL TIDEC ENTRY (FIXED BIN) ;

CALL TIDEC (variable);

Parameters

variable

OUTPUT. Binary value of character string typed.

Discussion

The number may be preceded by a minus sign to indicate that it is
negative, but must not be preceded by a plus sign. Numbers can be
terminated by a carriage return or a space. A question mark or other
error message is displayed if a numeric input is invalid, and more
input is then accepted. A space or carriage return is then accepted as
a zero.

This routine does not carry out erase or kill processing.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-2 6

USER TERMINAL I /O

TIHEX

Purpose

TIHEX reads terminal input as a hexadecimal number.

Usage

DCL TIHEX ENTRY (FIXED BIN);

CALL TIHEX (variable);

Parameters

variable

OUTPUT. Binary value of character string typed.

Discussion

The number may be preceded by a minus sign to indicate that it is
negative, but must not be preceded by a plus sign. Numbers can be
terminated by a carriage return or a space. A question mark or other
error message is displayed if a numeric input is invalid/ and more
input is then accepted. A space or carriage return is then accepted as
a zero.

This routine does not carry out erase or kill processing.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-27 First Edition

SUBROUTINES, VOLUME III

TIOCT

Purpose

TIOCT reads terminal input as an octal number.

Usage

DCL TIOCT ENTRY (FIXED BIN);

CALL TIOCT (variable);

Parameters

variable

OUTPUT. Binary value of character string typed.

Discussion

The number may be preceded by a minus sign to indicate that it is
negative, but must not be preceded by a plus.sign. Numbers can be
terminated by a carriage return or a space. A question mark or other
error message is displayed if a numeric input is invalid, and more
input is then accepted. A space or carriage return is then accepted as
a zero.

This routine does not carry out erase or kill processing.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

1
First Edition 3-28

USER TERMINAL I/O

USER TERMINAL OUTPUT ROUTINES

This section describes the following subroutines

Routine Function

ERRPR$ Prints a standard error message.

IOA$ Provides free-format output.

IOA$ER Provides free-format output, for error messages.

TNOU Writes characters to terminal, followed by NEWLINE.

TNOUA Writes characters to terminal.

TODEC Writes a signed decimal number.

TOHEX Writes a hexadecimal number.

TONL Writes a NEWLINE.

TOOCT Writes an octal number.

TOVFD$ Writes a decimal number, without spaces.

TlOB Writes one character from Register A.

TlOU Writes one character.

3-29 First Edition

SUBROUTINES, VOLUME I I I

ERRPR$

Purpose

ERRPR$ interprets a return code and, if the code is nonzero, prints a
standard message associated with the code, followed by optional user
text. See Volume I of the Subroutines Reference Guide for more details
on error handling.

Usage

DCL ERRPR$ ENTRY (FIXED BIN, FIXED BIN, CHAR{*), FIXED BIN, CHAR<*),
FIXED BIN);

CALL ERRPR$ (key, code, text, textlen, filnam, namlen);

Parameters

key

INPUT. The action to take after printing the message. Possible
values are:

K$NRTN Exit to the system; the system cannot return to the
calling program.

K$SRTN Exit to the system; return to the calling program
following a START command.

K$IRTN Return immediately to the calling program.

code

INPUT. A variable containing the return code from the routine that
generated the error. If code is 0, ERRPR$ always returns
immediately to the calling program and prints nothing.

text

INPUT. A message to be printed following the standard error
message. Text is omitted by specifying textlen as 0.

textlen

INPUT. The length (in characters) of text.

First Edition 3-30.

ERRPR$ USER TERMINAL I/O

filnam

INPUT. The name of the program or subsystem detecting or reporting
the error, filnam is omitted by specifying namlen as 0.

namlen

INPUT. The length (in characters) of filnam.

Discussion

If ERRPR$ is called from an EPF (executable program format) program,
using one of the key values K$NRTN, or K$SRTN signals a condition. A
key of K$NRTN causes the condition STOP$ to be signalled, with return
prohibited. By default, the STOP$ condition returns control to the
current command level. A key of K$SRTN causes the condition R0_ERR$ to
be signalled, with return permitted. By default, the R0_ERR$ condition
generates a new command level.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-31 First Edition

SUBROUTINES, VOLUME I I I

IOA$

Purpose

IOA$ provides free-format terminal output.

Usage

CALL IOA$ (control, conlen [, argl, ... argn]);

There is no DCL statement because IOA$ can be called at different times
with different numbers and types of arguments. See Note below.

Parameters

control

INPUT. Template string (CHARACTER NONVARYING). See Discussion
below for the format of this string.

conlen

INPUT. Length of control (FIXED BIN). If control is
self-terminating, conlen may be larger than the active length of
control. For more information, see Discussion below.

argl, argn

INPUT. Data for variable fields in string. There may be between
zero and 99 data arguments.

IOA$ is designed so that different calls can have a different number of
parameters and the parameters can have any data type. If IOA$ is
called from PL/1, each PL/1 procedure must declare IOA$ with the
parameters and types specified, and the module can only make calls to
IOA$ with those parameter types. These comments also apply to Pascal.

In FTN, F77, and COBOL, IOA$ can be called with varying numbers of
parameters in different places. The CBL compiler issues -a warning
message, which may be ignored.

C programmers should use the standard C procedure printf, on which IOA$
is based. Pascal programmers should use write, a standard Pascal
procedure.

First Edition 3-32

IOA$ USER TERMINAL I/O

Discussion

IOA$ provides free-format output to the terminal. In general,
application programs use the standard output package provided with the
programming language. Systems programs can benefit from the efficiency
of IOA$. Another advantage of IOA$ is that it provides more
flexibility than do most language support packages. Also, the format
of the IOA$ template is simple, and can even be constructed at runtime.

The first parameter, control, is a string that provides a template for
the output. The string contains a mixture of text and control codes;
control codes are introduced by a character pair made up of the escape
character and the percent symbol.

Any character not in a control code is output to the terminal. Most
control codes cause data to be formatted and written onto the terminal.
The data to be formatted is taken from the variable-length argument
list. IOA$ maintains an internal pointer that initially points to
argl. When a control sequence calls for the next argument, IOA$ uses
the argument currently pointed to and advances the pointer. If IOA$
runs out of arguments, output stops immediately. If IOA$ reaches the
end of control without using all the arguments, the excess arguments
are ignored.

You must ensure a match between the control codes and the actual
arguments. IOA$ cannot detect an attempt to convert a parameter of an
inappropriate type.

Here is a simple example. The statement below converts the value of
the 16-bit integer variable code to characters, and types the string
with the value inserted:

CALL IOA$('CODE IS %D.', 11, code);

The resulting string may look like this

CODE IS 99.

Control Code Format

The format of a control code sequence is as follows:

%fw:precZRtype

The notations fw, prec, and type each stand for a single character or
possibly (in the case of fw) a sequence of characters. Only the %

3-33 First Edition

SUBROUTINES, VOLUME III IOA$

(percent symbol) and type are required; the other parts are optional.
The parts of the code are:

fw Field width, or (occasionally) repeat count. This is
normally an integer, but may be a # character (number
sign). If the conversion uses this as a field width, the
output data occupies this number of characters. If the
specified field width is zero, the output data occupies as
much space as is necessary to contain it. If the data
needs fewer than fw characters, the data is justified
either right or left, as noted with the individual type
descriptions below.

If fw is negative or omitted, it assumes the value of 0
for a field width, or 1 for a repeat count.

If fw is the character # instead of an integer, the actual
field width (or repeat count) is taken from the next
argument, which is interpreted as a halfword integer.

:prec Precision. Note the required colon. This refers to
numeric fields, and indicates the type of integer provided
as an argument. Possible values for prec are:

0 Unsigned 16-bit integer
1 Signed 16-bit integer
2 Signed 32-bit integer
3 Unsigned 32-bit integer '*%

If the precision specifier is omitted, the default value
is 1.

Z If the letter Z is present, an integer is zero-filled to
the field width, rather than space-filled. Z may be in
either uppercase or lowercase. The X and L conversions
use Z in a special way; see the descriptions of these
conversions, below.

R If the letter R is present, the normal sense of
justification is reversed. Fields normally left-justified
will be right-justified, and vice versa. R may be in
either uppercase or lowercase.

type A character indicating the type of conversion to be
applied. If the character is a letter, the letter may be
in either uppercase or lowercase.

The type characters, and the conversions they represent, are as
follows:

% Output a single % (percent symbol) to the terminal. The field
width, precision, Z, and R, are ignored.

First Edition 3-34

IOA$ USER TERMINAL I/O

D Output the next argument as a decimal number, right-justified.
If the field width is too small to contain the number, as many
characters as needed are output.

0 Same as D above, except the number is output in octal.

H Same as D above, except the number is output in hexadecimal.

W Octal halfword. %W is equivalent to %:0ZO.

C Character string. The next argument is the string
(nonvarying), and the argument after that is a halfword integer
giving the string's length. If the length is negative, it is
treated as zero. The string is left-justified. Precision and
Z are ignored.

A Trimmed character string. Same as C, except the specified
string length is adjusted downwards by removing trailing blanks
from the string.

V Varying character string. The next argument is a string of
type character varying. It is displayed left-justified.
Precision and Z are ignored.

L Logical. The next argument is a 16-bit integer (precision is
ignored) that is regarded as true if any bit is 1. If Z is not
present, the result of the conversion is the letter T or F. If
Z is present, the result is the word TRUE or FALSE. The output
is right-justified.

P Pointer. The next argument is a pointer that can be 2 or 3
words long. The pointer's value is displayed in the standard
Prime format, and is left-justified. Precision and Z are
ignored.

X Output fw filler characters. The filler is 0 (zero) if Z is
present; normally it is the space character. Precision and R
are ignored.

/ Output fw newlines. Precision, Z, and R are ignored.

A Output fw form feed characters. Precision, Z, and R are
ignored.

$ Terminate control string immediately. If the string ends with
%$, you do not need to count the characters in control; conlen
can be any number equal to or greater than the actual string
length.

Terminate control immediately (as with %$) and output a
newline.

3-35 First Edition

SUBROUTINES, VOLUME III IOA$

(Start repeat group. The repeat count is fw, which must be
nonzero. All text and conversions between the %(and the next
%) are repeated fw times. Precision, Z, and R are ignored.
The repeat group should not contain a nested %(string.

) End repeat group (see above).

Y Reposition in the argument list. The fw value indicates where
to reposition; a value of 1 (or less) repositions to the first
of the variable arguments. A value of greater than 99 is
treated as 99.

If a conversion specifier does not follow the format rules, the result
is undefined.

Examples

Two examples are supplied below: the first is in FTN and the second is
in PL/I.

The following FTN subroutine accepts two arguments: a string and the
string's length. It displays the string and its length, followed by
the string's address:

SUBROUTINE DISP(ISTR, ILEN) ^
CALL IOA$('"%c" has %d characters.%.', 100,
1 ISTR, ILEN, ILEN)
CALL IOA$('It is at %p%.', 100, LOC(ISTR))
RETURN
END

If the following call is made:

CALL DISPCTEST STRING', 11)

the output is:

"TEST STRING" has 11 characters
It is at 4335(3)/1001

First Edition 3-36

IOA$ USER TERMINAL I/O

The following PL/I subroutine has two arguments: a string and a 32-bit
integer. It first displays the string in a 20-column field, indented
by 4 spaces, and then displays the number in hexadecimal.

disp2: proc(string, value);

declare string char(*)varying,
value fixed bin(31),
ioa$ entry (char(*), bin, char(*)var, bin(31));

call ioa$('%4x%20v%8:2zh%.', 100, string, value);

end;

If the following call is made:

call disp2('Hexadecimal value:', 12345678);

the output is:

Hexadecimal Vvalue: 00BC614E

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3-37 First Edition

SUBROUTINES, VOLUME I I I

IOA$ER

Purpose

IOA$ER provides free-format terminal output. Its most frequent use is
for displaying error messages, because it forces terminal output on.

Usage

CALL IOA$ER (control, conlen, argl, ... argn);

There is no DCL statement because IOA$ER can be called at different
times with different numbers and types of arguments. More information
is given in the IOA$ description.

Parameters

control

INPUT. Template string (CHARACTER NONVARYING). See the Discussion
section of IOA$ for the format of this string.

conlen

INPUT. Length of control (FIXED BIN). If control is
self-terminating, conlen may be larger than the active length of
control. See the Discussion section of IOA$ for more information.

argl, ... argn

INPUT. Data for variable fields in string. There may be between
zero and 99 data arguments. If there are more than 99 arguments,
the excess arguments are ignored.

Discussion

IOA$ER differs from IOA$ in one respect. Before the text is output to
the terminal, command output is forced on. This ensures the user will
see the message, even if command output has been turned off by the
COMOUTPUT command or the COMO$$ procedure.

See the description of IOA$ for further discussion of the meaning of
the parameters.

First Edition 3-38

IOA$ER USER TERMINAL I/O

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3-39 First Edition

SUBROUTINES, VOLUME III

TNOU

Purpose

TNOU writes a specified number of characters to the user terminal
followed by a line feed and carriage return.

Usage

DCL TNOU ENTRY (CHAR{*), FIXED BIN);

CALL TNOU (buffer, count);

Parameters

buffer

INPUT. Text to be written,

count

INPUT. Number of characters to be written.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-40

USER TERMINAL I/O

TNOUA

Purpose

TNOUA writes a specified number of characters to the user terminal,
without appending a line feed or carriage return.

Usage

DCL TNOUA ENTRY (CHAR(*), FIXED BIN);

CALL TNOUA (buffer, count);

Parameters

buffer

INPUT. Text to be written,

count

INPUT. Number of characters to be written.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: No special action.

3-41 First Edition

SUBROUTINES, VOLUME III

TODEC

Purpose

TODEC outputs a six-character signed decimal number.

Usage

DCL TODEC ENTRY (FIXED BIN);

CALL TODEC (variable);

Parameters

variable

INPUT. Value of number to be typed.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB

R-mode: No special action.

First Edition 3-42

USER TERMINAL I /O

TOHEX

Purpose

TOHEX outputs a four-character unsigned hexadecimal number

Usage

DCL TOHEX ENTRY (FIXED BIN);

CALL TOHEX (variable);

Parameters

variable

INPUT. Value of number to be typed.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-43 First Edition

SUBROUTINES, VOLUME I I I

TONL ^

Purpose

TONL outputs a carriage return and line feed.

Usage

DCL TONL ENTRY;

CALL TONL;

Parameters

There are no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: No special action.

First Edition 3-44

USER TERMINAL I/O

TOOCT

Purpose

TOOCT outputs a six-character unsigned octal number.

Usage

DCL TOOCT ENTRY (FIXED BIN);

CALL TOOCT (variable);

Parameters

variable

INPUT. Value of number to be typed.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-45 First Edition

SUBROUTINES, VOLUME III

TOVFD$

Purpose

TOVFD$ writes a 16-bit integer to the terminal.

Usage

DCL TOVFD$ ENTRY (FIXED BIN);

CALL TOVFD$ (variable);

Parameters

variable

INPUT. Value of number to be typed.

Discussion

This subroutine writes number, which should be a 16-bit integer, to the
terminal without any spaces (for example, 123 or -17).

Loading and Linking Information

V-mode and I-mode: No special action to load.

Link with FORTRAN_IO_JLIBRARY.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-46

USER TERMINAL I/O

T10B

Purpose

TlOB writes one character from Register A to the user terminal. This
procedure can be called only from PMA, because the user must have
access to Register A.

Usage

CALL TlOB;

No DCL statement is provided because the routine can only be called
from PMA.

Parameters

There are no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-47 First Edition

SUBROUTINES, VOLUME III

T10U

Purpose

TlOU writes a character to the user terminal.

Usage

DCL TlOU ENTRY ((2)CHAR);

CALL TlOU (char);

Parameters

char

INPUT. The character in char(2) is typed.

Discussion

If the data type of char is a 16-bit integer, the least significant 8
bits of the integer form the character to be typed.

If char is NEWLINE, RETURN and NEWLINE are output to the user terminal.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-48

USER TERMINAL I/O

USER TERMINAL CONTROL ROUTINES

This section describes the following subroutines:

Routine Function

BREAK$ Inhibits or enables BREAK function.

CO$GET Returns information about command output settings

COMI$$ Switches input between the terminal and a file.

COMO$$ Switches output between the terminal and a file.

DUPLX$ Controls the way PRIMOS treats the user terminal.

ERKL$$ Reads or sets the erase and kill characters.

QUIT$ Determines if there are pending quits.

TTY$IN Checks for unread terminal input characters.

TTY$RS Clears the terminal input and output buffers.

3-49 First Edition

SUBROUTINES, VOLUME III

BREAK$

Purpose

BREAK$ inhibits or enables CONTROL-P for interrupting a program.

Usage

DCL BREAK$ ENTRY (FIXED BIN);

CALL BREAK$ (logic_value);

Parameters

logic_value

INPUT. A 16-bit integer whose value can be 1 (TRUE) or 0 (FALSE).

Discussion

The LOGIN command initializes the user terminal so that the CONTROL-P
or BREAK key causes an interrupt (QUIT). The BREAK$ routine, if called
with the argument 0, enables the CONTROL-P or BREAK key to interrupt a
running program.

The BREAK$ routine called with the argument 1 inhibits the CONTROL-P or
BREAK characters from interrupting a running program.

This routine maintains a master list of the QUIT status for each user.
Each call to BREAK$, to inhibit or enable QUIT, increments or decrement
a counter, respectively. QUITs are enabled only when the counter is 0;
the counter becomes positive with inhibit requests, and cannot be
decremented below 0.

While QUITs are inhibited, the user can still determine if a CONTROL-P
was typed by using the QUIT$ routine.

BREAK$ has no effect under PRIMOS II.

First Edition 3-50

BREAK$ USER TERMINAL I/O

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-51 First Edition

SUBROUTINES, VOLUME III

CO$GET

Purpose

CO$GET retrieves information about the state of the user's command
output (COMO) settings.

Usage

DCL CO$GET ENTRY (FIXED BIN, FIXED BIN);

CALL CO$GET (reserved, status);

Parameters

reserved

OUTPUT. Reserved.

status

OUTPUT. The least significant two bits of this halfword indicate
the state of the command output stream. The bit settings are
independent of each other. The meanings are as follows:

Bit number Meaning

1 If set (1), command output will go to the terminal. If
clear (0), the terminal will receive no command output.

2 If set (1), a command output file is active. If clear
(0), there is no active command file, or a command file
is active and paused.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 3-52

USER TERMINAL I / O

COMI$$

Purpose

COMI$$ switches the command input stream from the user terminal to a
command file, or from a command file to the terminal.

Usage

DCL COMI$$ ENTRY (CHAR(*), FIXED BIN, FIXED BIN, FIXED BIN);

CALL COMI$$ (filnam, namlen, funit, code);

Parameters

filnam

INPUT. The name of the command file to receive the command input
stream (integer array). If filnam begins with the string TTY, the
command stream is switched back to the terminal and funit is

r closed. If filnam begins with the string PAUSE, the command stream

is switched to the terminal but the file unit specified by -funit is
not closed. If filnam begins with the string CONTIN, the command
stream is switched to the file already open on funit. Strings
beginning with TTY, PAUSE, or CONTIN cannot be used as -filenames.

namlen

INPUT. The length <in characters) of filnam.

funit

INPUT. The file unit on which to open the command file specified
by filnam. Normally, file unit 1> is ̂ised.

code

OUTPUT. Standard error code.

3-53 First Edition

SUBROUTINES, VOLUME III COMI$$

Loading and Linking Information r^m

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-54.

USER TERMINAL I / O

COMO$$

Purpose

COMO$$ switches terminal output to a file or terminal.

Usage

DCL COMO$$ ENTRY (BIT(16), CHAR(*), FIXED BIN, FIXED BIN, FIXED BIN);

CALL COMO$$ (key, filnam, namlen, xx, code);

Parameters

key

INPUT. A halfword of flags specifying the action to be taken. The
values below are specified in octal:

000001 Turn TTY output off.

000002 Turn TTY output on.

000010 Turn file output off.

000020 Turn file output on.

000040 Append to filnam if filnam is being opened; close
filnam if turning file output off.

:000100 Truncate filnam if filnam is being opened.

filnam

INPUT. The name of the file to be opened,

namlen

INPUT. The length (in characters) of filnam.

xx

INPUT. Reserved. Should be specified as 0.

code

OUTPUT. Standard error code from the file system.

3-55 First Edition

SUBROUTINES, VOLUME III COMO$$

Discussion

Routing of the terminal output stream is modified as indicated by the
key. If TTY output is turned off, all printing at the terminal is
suppressed until TTY output is reenabled or until a command output file
error message is generated. If a filename is specified, any current
command output file is closed, and then the new file is opened for
writing. All subsequent terminal output is sent to the new file. TTY
output continues unless explicitly suppressed. Unless the APPEND
option bit is set, the current contents of the file are overwritten.
The parameter can be omitted by specifying a pair of blanks or a length
of 0.

Error messages (from ERRRTN, ERRPR$, or I0A$ER) force TTY output on,
but leave the command output file open so the error message will appear
both on the terminal and in the file. Disk error messages force TTY
output on and file output off for the supervisor user (the file is left
open) . Unrecovered disk errors will do likewise for the user to whoir
the disk is assigned.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-56

USER TERMINAL I/O

DUPLX$

Purpose

DUPLX$ is called to control the manner in which the operating system
treats the user terminal.

Usage

DCL DUPLX$ ENTRY (BIT(16)) RETURNS (BIT(16));

old_tCW = DUPLX$ (tew);

Parameters

tew

INPUT. Terminal configuration word. See below.

old_tcw

OPTIONAL RETURNED VALUE. Both tew and old_tcw represent the
terminal configuration word, which is a 16-bit integer whose bits
have the following meanings (the values below are specified in
octal):

Bit

1

2

3

4

5

Mask Meaning If Bit Is SET

100000 Half duplex.

040000 Do not echo LINEFEED after CARRIAGE RETURN.

020000 Turn on XOFF/XON character recognition.

010000 Output currently suppressed (XOFF received).

004000 Detect DATA SET BUSY before output to AMLC
line. (See AMLC Functions below.)

3-57 First Edition

SUBROUTINES, VOLUME III DUPLX$

Bit Mask

002000

001000

9-16

000400

000377

Meaning If Bit Is SET

Handle reverse channel functionality.
AMLC Functions below.)

Data Set Sense Bits

(See

Bit 6=1 Bit 6=0

1 (off) XOFF XON

0 (on) XON XOFF

Check for certain error conditions:

o Overflow of the input buffer

o Parity error

If one of these conditions is present, the
character found is replaced with the NAK
character.

Indicates a parity error (output). Overflow
of the input buffer is flagged when there is
only room for one more character.

Internal buffer number (read-only).

Discussion

DUPLX$ has no effect under PRIMOS II.

DUPLX$ returns the terminal configuration word and internal buffer
number as the value of the function. DUPLX$ must be declared as a
function if the returned value is to be used by the calling program.

If the terminal configuration word passed to DUPLX$ is set to all ones,
no updating of the configuration word takes place, and the current
value is returned.

The tew of a user terminal is not affected by the LOGIN or LOGOUT
commands. The tew of the user terminal can also be set at the
supervisor terminal by using the SET_ASYNC command or the AMLC command.
Users can also use the PRIMOS command TERM to change their terminal
characteristics.

First Edition 3-58

DUPLX$ USER TERMINAL I/O

AMLC Functions

Certain devices require a reverse channel protocol to signal BUSY or
READY. For these cases, the carrier detect line is used for the
signal. Bit 5 of the terminal configuration word instructs the AMLC
(Asynchronous Multi-line Controller) software to interrogate the
carrier signal for that line before writing to the device. If a BUSY
is detected, then the AMLC software simulates an XOFF received for that
line. When the carrier signal goes to the READY state, the AMLC
software flags it as an XON, and output resumes. For example, if the
device signals BUSY as DATA SET OFF (1), then the terminal
configuration word bit setting is:

Bit 5=1 Detect DATA SET sense.

Bit 6=1 If DATA SET sense is off, then simulate XOFF;
else set XON.)

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-59 First Edition

SUBROUTINES, VOLUME III

ELriKL\p$ /^

Purpose

The ERKL$$ subroutine reads or sets the user's definitions of the erase
and kill characters.

Usage

DCL ERKL$$ ENTRY (FIXED BIN, (2)CHAR, (2)CHAR, FIXED BIN);

CALL ERKL$$ (key, erase, kill, code);

Parameters

key

INPUT. The action to be taken. Possible values are:

K$WRIT Set erase and kill characters.

K$READ Read erase and kill characters.

erase

INPUT or OUTPUT. With key K$WRIT, the character contained in
erase(2) replaces the user's erase character. If erase(2) contains
all zero bits, no action takes place. On key K$READ, the user's
erase character is placed in erase(2).

kill

INPUT or OUTPUT. With key K$WRIT, the character contained in
kill(2) replaces the user's kill character. If kill(2) contains
all zero bits, no action takes place. On key K$READ, the user's
kill character is placed in kill(2).

code

OUTPUT. Standard error code. Possible values are:

0 No errors.

E$BKEY Invalid value for key.

E$BPAR Attempt to set the erase and kill characters to the
same value.

First Edition 3-60

ERKL$$ USER TERMINAL I/O

Discussion

Erase and kill characters are interpreted by commands to the operating
system and by most of the subroutines that perform terminal input.
Exceptions are noted with the subroutine description. All language
processors' I/O facilities are affected.

Note

RDASC, I$AA12, and I$AA01 are library subroutines that read the
user's erase and kill characters only once, when they are first
invoked. Changing the erase and kill characters after a call
to those subroutines does not affect erase and kill processing
in these subroutines until the next program is invoked. The
main purpose for users calling the ERKL$$ subroutine is to read
or set these characters when the user programs do their own
erase and kill processing.

Under PRIMOS II, the erase and kill characters can be read but any
attempt to set them is ignored.

The erase and kill characters can be set at command level by the PRIMOS
TERM command. The characters are reset to default values upon an
explicit logout or login.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-61 First Edition

SUBROUTINES, VOLUME III

QUIT$

Purpose

QUIT$ determines if there are pending terminal quits, and removes the
record of them. QUITS reads, and then clears, the bit that recorded
that a CONTROL-P was typed.

Usage

DCL QUIT$ ENTRY(FIXED BIN);

CALL QUIT$ (pending);

Parameters

pending

OUTPUT. Set to 0 if there are no quits pending. Set to 1 if there
is a quit pending.

Discussion

Recognition of terminal quits may be deferred if the user calls BREAK$.
If recognition of quits is deferred, and a CONTROL-P has been typed,
QUITS returns a value of 1 in pending. If recognition of quits is not
deferred, QUIT$ always returns a value of 0 in pending.

QUIT$ also removes the pending quits. You may use BREAK$ and QUIT$
together as a simple way of servicing quit requests without having to
use the condition mechanism.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

First Edition 3-62

USER TERMINAL I/O

TTY$IN

Purpose

This function checks whether there are any characters in the user's TTY
input buffer. The state of the buffer is undisturbed by the call; no
character is actually read or removed from the buffer.

Usage

DCL TTY$IN ENTRY () RETURNS (BIT(1)ALIGNED);

more_to_read = TTY$IN ();

Parameters

more_to_read

RETURNED VALUE. True ('l'b) if there is at least one character of
input available at the terminal of the calling process, and 'O'b
otherwise.

Discussion

TTY$IN is used to check if the user has typed at least one character
that has not yet been read by the process. TTY$IN allows the program
to poll for input and perform other processing while waiting for the
input to arrive. All terminal input routines wait for a character to
be typed before returning to the caller.

If TTY$IN is called in a noninteractive process, 'O'b is always
returned, whether or not a command input file is active.

It is possible for TTY$IN to return 'l'b, and for a subsequent call to
an input subroutine to wait for input. This can happen if you press
CONTROL-P after TTY$IN is called, which causes a quit to PRIMOS and the
flushing of the input buffer. When you press START, the next input
request waits for a character.

Because FTN cannot call functions without arguments, this routine
cannot be called directly from FTN.

3-63 First Edition

SUBROUTINES, VOLUME III TTY$IN

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First- Edition 3-64

USER TERMINAL I /O

TTY$RS

Purpose

This routine is called to clear the user's input and output buffers. A
key is passed that contains two bits specifying whether the input and
output buffers are to be cleared. This routine takes no action for
noninteractive users (such as phantoms and batch jobs).

Usage

DCL TTY$RS ENTRY (FIXED BIN, FIXED BIN);

CALL TTY$RS (key, code);

Parameters

key

INPUT. The keys indicating whether or not to clear the I/O
buffers. Possible key values are:

K$OUTB Clear output buffer
K$INB Clear input buffer

code

OUTPUT. Standard error code.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3-65 First Edition

4
Memory Allocation

This chapter describes procedures that allow you to allocate and free
blocks of contiguous memory. This is a useful feature in many
applications where either the size or the number of data structures is
not known until runtime. With help from these procedures, the system
allocates only as much memory as is needed.

The first part of this chapter lists procedures for allocating and
freeing various classes of dynamic memory. Refer to the Advanced
Programmer's Guide for a discussion of these classes. There are pairs
of routines for allocating and freeing. Two allocation routines are
provided for user-class memory; one indicates errors by returning an
error code, the other by raising a condition. Which routine you use
depends on the convenience you want. There are also two freeing
routines, with the same distinction in error indications.

The second section of this chapter contains specific functions related
to the use of command function programs built with BIND (EPFs).

The third section of this chapter lists procedures that tell you how
much memory is available.

Most of the routines have an argument of type "pointer". This makes
them difficult to use from FORTRAN and COBOL. These languages have no
support for pointer-based structures. Also, many routines return a
short (2-halfword) pointer. Pascal programs expect a 3-halfword
pointer, which is returned differently. Therefore, Pascal programs
will not work correctly with these routines.

4-1 First Edition

SUBROUTINES, VOLUME III

GENERAL-PURPOSE ALLOCATE AND FREE ROUTINES

This section describes the following subroutines

Routine Function

ALOC$S Allocates memory on the current stack.

STR$AL Allocates user-class dynamic memory.

STR$AP Allocates process-class dynamic memory.

STR$AS Allocates subsystem-class dynamic memory.

STR$AU Allocates user-class dynamic memory.

STR$FP Frees process-class dynamic memory.

STR$FR Frees user-class dynamic memory.

STR$FS Frees subsystem-class dynamic memory.

STR$FU Frees user-class dynamic memory.

First Edition 4-2

MEMORY ALLOCATION

ALOC$S

Purpose

This routine allocates an area of memory on the current procedure's
stack.

Usage

DCL ALOC$S (FIXED BIN, POINTER, BIT{1)) OPTIONS (SHORTCALL(4)) ;

CALL ALOC$S (block_size, block_ptr, contig_flag);

Parameters

block_size

INPUT. Number of halfwords to allocate.

block_ptr

OUTPUT. Points to allocated storage. If block_size is zero or
negative, block_ptr returns the null pointer.

contig_flag

OUTPUT. If true ('l'b), the space was allocated in an area
contiguous with the current stack. If false CO'b), a new segment
was allocated for the stack extension.

Discussion

The memory allocated by ALOC$S is found by extending the calling
procedure's stack frame. For this reason, the memory remains usable
only until the calling procedure returns to its own caller, at which
time the memory is automatically de-allocated. The address of the
allocated memory should never be passed out to a calling procedure.

ALOC$S must be declared with the attribute OPTIONS (SHORTCALL(4)).
This makes the procedure callable only from PL/I. It could be called
from PMA, but PMA programmers will find it more convenient to use the
single instruction STEX to produce the same result as ALOC$S.
SHORTCALL causes the instruction JSXB to be used instead of the PCL
instruction. JSXB does not generate a new stack, but operates using
space in the caller's stack. This means the procedure can only be
called from a module compiled in V-mode.

4-3 First Edition

SUBROUTINES, VOLUME III ALOC$S

Loading and Linking Information

V-mode: No special action.

V-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 4-4

MEMORY ALLOCATION

STR$AL

Purpose

This routine allocates space from dynamic memory for user-class
storage. It returns an informative error code if a problem occurs,
instead of raising a condition (as in STR$AU).

Usage

DCL STR$AL ENTRY (FIXED BIN(15), FIXED BIN(31), FIXED BIN(15),
FIXED BIN(15)) RETURNS(POINTER) OPTIONS(SHORT);

block_ptr = STR$AL (reserved, block_size, reserved, code);

Parameters

reserved

INPUT. This field must have a value of zero (0).

block_size

INPUT. The size of the block to allocate, in halfwords,

reserved

INPUT. This field must have a value of zero (0).

code

OUTPUT. Standard error code. Possible error codes are:

E$ALSZ Invalid block_size

E$ROOM Insufficient space

E$HPER Corrupt heap

block_ptr

RETURNED VALUE. The pointer to the allocated space.

4-5 First Edition

SUBROUTINES, VOLUME III STR$AL

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 4-6

MEMORY ALLOCATION

STR$AP

Purpose

This routine allocates space from process-class storage. If any errors
are detected, an appropriate error message is displayed and a condition
is signalled.

Usage

DCL STR$AP ENTRY (FIXED BIN(31)) RETURNS(POINTER) OPTIONS(SHORT);

block_ptr = STR$AP (block_size);

Parameters

block_size

INPUT. The size of the block to allocate, in halfwords.

block_ptr

RETURNED VALUE. Pointer to the allocated space.

Discussion

If any errors are detected, STR$AP signals the condition
SYSTEM_STORAGE$. The default action taken by the system is then to
re-initialize the user's command environment.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-7 First Edition

SUBROUTINES, VOLUME III

STR$AS

Purpose

This routine allocates space from dynamic memory for subsystem-class
storage. If any errors are detected, an appropriate error code is
returned.

Note

Use STR$AS to allocate dynamic memory space for Prime-supplied
subsystems ONLY.

Usage

DCL STR$AS ENTRY (FIXED BIN(31), FIXED BIN(15))
RETURNS(POINTER) OPTIONS(SHORT);

block_ptr = STR$AS (block_size, code);

Parameters

block_size

INPUT. The size (in halfwords) of the block to allocate,

code

OUTPUT. Standard error code. Possible error codes are:

E$BPAR Invalid value for block_size

E$ROOM Insufficient space

E$NSUC Corrupt heap

block_ptr

RETURNED VALUE. Pointer to the allocated space.

First Edition 4-8

STR$AS MEMORY ALLOCATION

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-9 First Edition

SUBROUTINES, VOLUME III

STR$AU

Purpose

This routine allocates space from dynamic memory for user-class
storage. If an error occurs, a condition is raised.

Usage

DCL STR$AU ENTRY (FIXED BIN(31)) RETURNS(POINTER) OPTIONS(SHORT);

block_ptr = STR$AU (block_size) ;

Parameters

block_size

INPUT. Size of the block to allocate (in halfwords).

block_ptr

RETURNED VALUE. Pointer to the allocated space.

Discussion

When a bad block_size is given, this routine raises the ERROR
condition. When not enough space can be found in the heap, the routine
raises the STORAGE condition. When the heap is found to be corrupted,
it raises the HEAP_ERROR$ condition.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 4-10

MEMORY ALLOCATION

STR$FP

Purpose

This routine returns space to process-class storage. If any errors are
detected, an appropriate error message is displayed and a condition is
signalled.

Usage

DCL STR$FP ENTRY (POINTER) OPTIONS(SHORT) ;

CALL STR$FP (block_ptr);

Parameters

block_ptr

INPUT. Pointer to the allocated space.

Discussion

If any errors are detected, STRSFP signals the condition
SYSTEM_STORAGE$. The default action taken by the system is then to
re-initialize the user's command environment.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-11 First Edition

SUBROUTINES, VOLUME I I I

STR$FR

Purpose

This routine returns space to user-class storage. If any errors are
detected, an error code is returned (instead of an error condition as
with STR$FU).

Usage

DCL STR$FR ENTRY (FIXED BIN(15), POINTER, FIXED BIN(15));

CALL STR$FR (reserved, block_ptr, code);

Parameters

reserved

INPUT. Reserved.

block_ptr

INPUT. Pointer to the storage space to be freed,

code

OUTPUT. Standard error code. Possible error codes are:

E$FRER Invalid free request

E$HPER Corrupted heap

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 4-12

MEMORY ALLOCATION

STR$FS

Purpose

This routine returns space to subsystem-class storage. If any errors
are detected, an appropriate error code is returned.

Usage

DCL STR$FS ENTRY (POINTER, FIXED BIN(15));

CALL STR$FS (block_ptr, code);

Parameters

block_ptr

INPUT. Pointer to the allocated space,

code

OUTPUT. Standard error code. Possible error codes are:

E$FRER Invalid free request

E$NSUC Corrupted heap

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-13 First Edition

SUBROUTINES, VOLUME I I I

STR$FU

Purpose

This routine returns space to user-class storage. If an error occurs,
a condition is raised.

Usage

DCL STR$FU ENTRY (POINTER);

CALL STR$FU (block_ptr);

Parameters

block_ptr

INPUT. Pointer to block of data to free.

Discussion

When a bad block_ptr is passed, it raises the ERROR condition. When
the heap is found to be corrupted, it raises the HEAP_JERROR$ condition.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPPTNLB.

R-mode: Not available.

First Edition 4-14

MEMORY ALLOCATION

COMMAND FUNCTION RETURNED DATA ROUTINES

This section describes the following subroutines:

Routine Function

ALC$RA Allocates space for EPF function return information.

ALS$RA Allocates space and sets value of EPF function return
information.

FRE$RA De-allocates space for RPF function return
information.

4-15 First Edition

SUBROUTINES, VOLUME III

ALC$RA

Purpose

This routine allocates space for EPF (Executable Program Format)
function return information. Refer to the Advanced Programmer's Guide
for a further discussion of ALC$RA and ALS$RA.

Note

This interface requires the caller to perform pointer-based
operations. Fortran or COBOL programs should use the ALS$RA
subroutine.

Usage

DCL ALC$RA ENTRY (FIXED BIN(31), POINTER);

CALL ALC$RA (space_needed, rtn_fcn_ptr);

Parameters

space_needed

INPUT. The total amount of space needed for the return structure
(in 16-bit halfwords). It is the sum of the space needed for the
return value and the structure version number. See below for the
layout of the return structure.

rtn_fcn_ptr

OUTPUT. The pointer to the information to be returned by the
function.

First Edition 4-16

ALC$RA MEMORY ALLOCATION

Discussion

When a function returns information, it passes the data to the caller
via an assignment statement. For an EPF (Executable Program Format) to
do this, it must create an indirect pointer and a storage area, so that
when the data is returned at execution time it can be stored and
accessed by the caller of the function. In order to pass such
information to the operating system, an interface (given in the
discussion below) defines rtn_fcn_ptr and rtn_fcn_struc.

ALC$RA provides you the space for rtn_fcn_struc; it also returns the
value for rtn_fcn_ptr, which you can then pass back to the caller of
the EPF function.

*
Refer to the Advanced Programmer's Guide for a detailed discussion of
the following interface.

When using dynamic storage allocation, an EPF program acting as a
function (that is, passing back some result to the operating system)
must first have the following interface defined:

del your_epf entry(char(1024) var, fixed bin(15),
1, 2 char(32) var,

2 fixed bin(15),
2 ptr,
2, 3 fixed bin(31),

3 fixed bin(31),
3 fixed bin(31),
3 fixed bin(31),
3 bit(l),
3 bit(l),
3 bit(l),
3 bit(l),
3 bit(l),
3 bit(11),
3 bit(l),
3 bit(l),
3 bit(14),
3 fixed bin(15),
3 fixed bin(15),
3 bit(l),
3 bit(l),
3 bit(l),
3 bit(13),

1, 2 bit(l),
2 bit(15),

ptr) ;

call your_epf(command_args, command_status, command_state,
command_fcn_flags, rtn_fcn_ptr);

4-17 First Edition

SUBROUTINES, VOLUME III ALC$RA

These arguments are defined as follows:

command_args

command_status

The entire command line as entered by the user.

The command status returned by the program to the
operating system:

= 0 No error
> 0 Fatal error
< 0 Soft error or warning

c ommand_s t at e Information relative' to this invocation,
contains, in the order specified:

It

command name — Command entered by user.

version — Current version of the structure of the
command state (1 at Rev. 20,2).

vcb_ptr — Pointer to CPL local variables.

preprocessing_info — Information relating to what
has been preprocessed:

modL_after_date — If nonzero, then the command
processor has found something modified after the
given date.

mod_before_date — If nonzero, then the command
processor has found something modified before the
given date.

bk_after_date — If nonzero, then the command
processor has found something backed up after the
given date.

bk_before_date — If nonzero, then the command
processor has found something backed up before
the given date.

type_dir — If nonzero, a directory has been
found that matches a wildcard.

type_segdir — If nonzero, a segment directory
has been found that matches a wildcard.

type_file — If nonzero, a file has been found
that matches a wildcard.

First Edition 4-18

ALC$RA MEMORY ALLOCATION

type_acat — If nonzero, an access category has
been found that matches a wildcard.

type_rbf — If nonzero, a recovery-based file has
been found that matches a wildcard.

resl — 11 bits with undefined values.

verify_sw — If nonzero, the -VERIFY option has
been given.

botup_sw — A full treewalk was performed before
executing program.

res2 — 14 bits with undefined values.

walk_from — Tree level at which the present
treewalk started.

walk_to — Present treewalk level.

in_iteration — If nonzero, the command processor
is currently in an iteration sequence.

in_wildcard — If nonzero, the command processor
is currently in a wildcard sequence.

in_treewalk — If nonzero, the command processor
is currently in a treewalk sequence.

res3 — 13 bits with undefined values.

command_fcn_flags Information relative to this command function
invocation. Its contents in the order specified are:

command_fcn_call — If nonzero, this program has
been called as a command function.

reserved — 15 bits with undefined values..

4-19 First Edition

SUBROUTINES, VOLUME III ALC$RA

rtn_fcn_ptr Pointer to a structure that describes the values
returned to the caller of the EPP function. This
structure is itself defined as:

del 1 rtn_fcn_struc,
2 version fixed bin(15),
2 value_str char(*) var;

Where:

version — Structure's version (see following
discussion).

value_str — String of 1 to 327 67 characters
holding the value to be returned.

First obtain the value of rtn__fcn_p_tr by calling ALC$RA (or ALS$RA) .
After the call to ALC$RA, your program must set the version number of
rtn_fcn_strue to 0 and copy the value of that structure into value—str.
Then the interface sets rtn_fcn_ptr in its main entrypoint's calling
sequence and returns to the calling program.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 4-20

MEMORY ALLOCATION

ALS$RA

Purpose

This routine is used both to allocate space from process-class storage
for EPF (executable program format) function return information and to
set the value of the information. It also assigns the value 0 to the
version number within the return function structure. See
rtn_function_addr below.

Usage

DCL ALS$RA ENTRY (CHAR(*), FIXED BIN<31), POINTER);

CALL ALS$RA (function_result_str, char_size_of_str/
rtn_function_addr);

Parameters

function_result_str

INPUT. The character string that is the result of the program
invoked as a function. The string can contain up to 8192
characters.

char_size_of_str

INPUT. The number of characters in function_result_str.

rtn_funct ion_addr

OUTPUT. The address allocated to rtn_fcn_struc. The structure
itself has this format:

1 rtn_fcn_struc,
2 version fixed bin(15),
2 value_str char(*) var;

Discussion

The address is returned as a pointer to the EPF function that called
ALS$RA; the calling function then stores it for future use.

4-21 First Edition

SUBROUTINES, VOLUME III ALS$RA

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 4-22

MEMORY ALLOCATION

FRE$RA

Purpose

This routine de-allocates the space designated for the information from
the EPF (executable program format) functions. After processing the
information returned from functions, the invoker should call this
routine to free up space and maintain an efficient command environment.

Usage

DCL FRE$RA ENTRY (POINTER);

CALL FRE$RA (rtn_function_ptr);

Parameters

rtn_f unct ion_pt r

INPUT. Pointer to the space set aside for EPF functions, earlier
allocated by ALC$RA or ALS$RA.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-23 First Edition

SUBROUTINES, VOLUME III

INFORMATIONAL ROUTINES

This section describes the following subroutines:

Routine Function

DY$SGS Returns maximum number of dynamic segments.

ST$SGS Returns maximum number of static segments.

TL$SGS Returns highest segment number.

First Edition 4-24

MEMORY ALLOCATION

DY$SGS

Purpose

This routine is one of several that retrieve EPF-related information
from the in-memory copy of the user's profile. This routine retrieves
the maximum number of private, dynamic segments allocated to the user.

Usage

DCL DY$SGS ENTRY () RETURNS (FIXED BIN(15));

maximum_private_dynamic_segs = DY$SGS ();

Parameters

maxiraum_private_dynamic_segs

RETURNED VALUE. The maximum number of private dynamic segments
allocated to the user.

Discussion

This function cannot be called from FTN because it has no parameters,

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-25 First Edition

SUBROUTINES, VOLUME III

ST$SGS

Purpose

This routine is one of several that retrieve EPF-related information
from the in-memory copy of the user's profile. This routine retrieves
the maximum number of private, static segments allocated to the user.

Usage

DCL ST$SGS ENTRY () RETURNS (FIXED BIN(15));

maximum_private_static_segs = ST$SGS {);

Parameters

maximum_private_static_segs

RETURNED VALUE. Maximum number of private static segments
allocated to the user.

Discussion

This function cannot be called from FTN because it has no parameters

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 4-26

MEMORY ALLOCATION

TL$SGS

Purpose

This routine is one of several that retrieve EPF-related information
from the in-memory copy of the user's profile. This routine retrieves
the number of the highest segment that can be allocated to the user.

Usage

DCL TL$SGS ENTRY () RETURNS (FIXED BIN);

maximum_private_seg = TL$SGS ();

Parameters

maximum_private_seg

RETURNED VALUE. Segment number of the highest private segment that
can be allocated to the user.

Discussion

Private segments are allocated from the range 4000-5777 octal
(2048-3071 decimal). Therefore, to determine how many segments can be
allocated in this range, subtract 2047 from maximum_private_seg.

This function cannot be called from FTN because it has no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-27 First Edition

5
Program Control

The first part of this chapter contains routines of general use in
controlling the user's command environment and terminating programs.

The second part of this chapter contains routines used for controlling
static-mode programs.

The third part of this chapter contains routines used for controlling
phantom processes. A phantom is a process that can operate separately
from its creator process, and can continue working after the creator
has logged out. Phantoms are discussed in detail in the Prime User7s
Guide.

Several of the routines described here operate by raising (signalling)
conditions. The information about these conditions is of use to
designers of complex subsystems that communicate between programs. The
condition mechanism is described in Chapter 7.

RECURSIVE COMMAND ENVIRONMENT

The recursive command environment provides a fully recursive command
processing loop that is also highly modular. The implementation of
this environment divides system and user software into two categories:
static mode and recursive mode.

5-1 First Edition

SUBROUTINES, VOLUME III

Static-mode software

, • Allocates its own segments

• Manages its own stack

• Manages its own shared libraries' initialization

• Uses a "memory image" approach; the program is reloaded each
time it is called and thus programs cannot be recursively
invoked from command level

Recursive-mode software

• Uses the system stack

• Terminates by returning to the calling procedure

• Does not attempt to initialize shared libraries

• Is not reloaded as a memory image each time it is called

User on-units, any procedures they call, and all internal commands are
recursive-mode software.

A recursive-mode procedure should terminate by returning, not by
calling EXIT. Arguments for recursive-mode commands are passed as
parameters and are not obtained from a static buffer. Error
information is passed by setting a return parameter (error code),
printing an error message and returning, or by signalling a condition.
The ERRRTN call must not be used. ERRPR$ can be used with any of its
three valid keys; see the discussion with the routine description in
Chapter 3. Recursive-mode programs and library routines are
implemented as Executable Program Format (EPP) files. Executable
Program Format is discussed in detail in Volume II of the Subroutines
Reference Guide.

PHANTOM PROCESSES AND LOGOUT NOTIFICATION

A phantom is a process that can operate separately from its creator
process, and can continue working after the user has logged out.
Phantoms are discussed in detail in the Prime User's Guide.

Logout Notification for Phantoms

Logout notification provides the creator of a phantom process with
information about the phantom's activities. This information is
compiled at phantom logout time and sent to the creator. This is known
as notification.

First Edition 5-2

PROGRAM CONTROL

Normally, the information will be displayed at the creator's terminal.
The information contains the phantom's user number, the time of day of
logout, the elapsed time, CPU time, I/O time spent by the phantom, and
an error code indicating normal or abnormal logout. Normal logout
occurs when a phantom completes with a LOGOUT command. All other
logouts will generate abnormal logout.

Logout information will be compiled at this time and sent to the
creator. If a user is logged in as more than one process, the
information will only be sent to the process from which the phantom was
created. If the creator of the phantom has logged out while the
phantom was running, the information will not be sent. This means that
once a user has logged out, the phantom will not notify the user of
logout even if the user logs back in.

Sometimes it becomes necessary for a user to record the phantom logout
information via a program. The logout notification system provides two
subroutines that allow for this event. The first subroutine, LON$CN,
allows a user to turn logout notification off or on. The second
subroutine, LON$R, allows a user to fetch phantom logout information
instead of having the information written to a terminal.

When LON$CN is called to turn off logout notification, phantom logout
information is automatically queued for future access. This allows
users to turn off logout notification without having to worry about
either the condition of their terminal screen or the loss of the status
of their phantoms.

When LON$CN is requested to turn on logout notification, any pending
logout information is written to the user's terminal.

As mentioned above, a user may fetch phantom logout information by
invoking LON$R. Normally, logout notification is enabled, and invoking
LON$R will have no effect. Therefore, when using LON$R, logout
notification should be turned off by invoking LON$CN.

When logout notification occurs, a system default condition handler or
on-unit named PH_LOGO$ is invoked to write the information upon the
creator's terminal. This on-unit is also invoked when LON$CN is
requested to turn on logout notification. Users who do not ever wish
to see logout information written upon their terminal should create
their own on-unit for PH_LOGO$. This user-defined PH_LOGO$ will
usually call LON$R to fetch phantom logout information.

5-3 First Edition

SUBROUTINES, VOLUME III

COMMAND LEVEL CONTROL ROUTINES

This section describes the following subroutines:

Routine Function

CMLV$E Calls a new command level after an error.

COMLV$ Calls a new command level.

EXIT Returns to PRIMOS.

ICE$ Initializes the command environment.

SETRC$ Records command error status.

SS$ERR Signals an error in a subsystem.

First Edition 5-4

PROGRAM CONTROL

CMLV$E

Purpose

This routine causes a new command level to be called after an error
occurs.

Usage

DCL CMLV$E ENTRY;

CALL CMLV$E;

Parameters

There are no parameters.

Discussion

When CMLV$E is called, a PRIMOS routine called the command listener
does the following: it pauses command input, displays the error
prompt, waits for input, forces terminal output on, and enables quits.
The CMLV$E subroutine returns to the caller only after you issue a
START command from the new command level.

Compare this to COMLV$, which should be called to perform similar
functions in situations where there has not been an error.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-5 First Edition

SUBROUTINES, VOLUME III

COMLV$

Purpose

This routine causes a new command level to be called.

Usage

DCL COMLV$ ENTRY;

CALL COMLV$;

Parameters

There are no parameters.

Discussion

When COMLV$ is called, a PRIMOS routine called the command listener
displays the ready prompt and waits for input. Only after you issue
the START command from that command level will the COMLV$ subroutine
return to the caller.

Compare CMLV$E, which should be called to perform similar functions in
error situations.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 5-6

PROGRAM CONTROL

EXIT

Purpose

The EXIT subroutine provides a way to return from a user program to the
PRIMOS command processor.

Usage

DCL EXIT ENTRY;

CALL EXIT;

Parameters

There are no parameters.

Discussion

^"V EXIT is intended for use from a static-mode program. EPF (Executable
Program Format) programs should terminate by using the RETURN statement
in the main program, but may call EXIT if desired. For example, it may
be convenient to call EXIT to terminate the program from a subroutine
many call levels deep. In EPF programs, CALL EXIT is much less
efficient than using a RETURN.

When EXIT causes a return to the command level, the PRIMOS command
processor prints the ready prompt (initially OK, or OK:) at the
terminal and awaits a user command. If EXIT is called from a
static-mode program, the user may open or close files or switch
directories, and restart a program at the next statement by typing S
(START). If EXIT is called from an EPF, it signals the STOP$ condition
and disables continuation using the START command.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

5-7 First Edition

SUBROUTINES, VOLUME III

ICE$ /rf!'̂ \

Purpose

This routine initializes the command environment,

Usage

DCL ICE$ ENTRY;

CALL ICE$;

Parameters

There are no parameters.

Caution

Avoid using this subroutine! It may affect the integrity of
subsystems, including Prime data management products. CLEANUP$
on-units on the stack are not invoked. Consequently, it should
be used only when the stack has clearly been damaged.

Discussion

ICE$ closes all open files, including the command output file, and
resets your environment to its initial state. The routine never
returns, and the invoking program is terminated. If you are working in
a subdirectory during an ICE$, you are returned to your origin UFD.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 5-8

PROGRAM CONTROL

SETRC$

Purpose

This routine records the code you give it. Later, when the program
exits, the system regards the code you gave as the error status. This
routine does not cause an immediate return to the calling software.

Usage

DCL SETRC$ ENTRY (FIXED BIN [, BIT(1)ALIGNED]);

CALL SETRC$ (severity_code [, abort_flag]);

Parameters

s e ve r ity_code

INPUT. The severity code to return to the invoker of this program.

abort_flag

OPTIONAL INPUT. Value is 'l'b if the command file (if any) is to
be aborted, and 'O'b if it is not to be aborted. (This flag will
make no difference if this command was invoked by a CPL procedure.)

Discussion

If severity_code is less than or equal to 0, then abort_flag is
ignored, and the command file is never aborted.

If severity_code is greater than 0, and abort_flag is omitted or 'O'b,
the condition SETRC$ is signalled. The default on-unit for SETRC$
records the occurrence of the event and returns.

SETRC$ is intended for use from static-mode programs only. EPF
(Executable Program Format) programs set the status code by using an
output parameter.

5-9 First Edition

SUBROUTINES, VOLUME III SETRC$

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

/"%

First Edition 5-10

PROGRAM CONTROL

SS$ERR

Purpose

This routine signals an error in a subsystem. It is intended to
terminate the program immediately if it is being used in a phantom.

Usage

DCL SS$ERR ENTRY;

CALL SS$ERR;

Parameters

There are no parameters.

Discussion

If a command input file is active, the condition SUBSYS_ERR$ is raised.
Raising this condition usually results in the termination of the caller
by means of a nonlocal GOTO back to the command processor. If you are
interactive, SS$ERR simply returns.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

5-11 First Edition

SUBROUTINES, VOLUME III

STATIC-MODE SAVE AND RESTORE ROUTINES

This section describes the following subroutines:

Routine Function

REST$$ Restores an R-mode executable image.

RESU$$ Restores and resumes an R-mode executable image.

SAVE$$ Saves an R-mode executable image.

First Edition 5-12

PROGRAM CONTROL

REST$$

Purpose

REST$$ reads R-mode executable code from a file in the current UFD into
memory.

Usage

DCL REST$$ ENTRY ((9)FIXED BIN, CHAR<*), FIXED BIN, FIXED BIN);

CALL REST$$ (vector, filnam, namlen, code);

Parameters

vector

OUTPUT. A nine-half word array set by REST$$. vector (1) is set to
the first location in memory to be restored, vector(2) is set to
the last location to be restored. The array is set as follows:

vector(1) Set to first location in memory to be restored

vector(2) Set to last location in memory to be restored

vector(3) Saved P register

vector(4) Saved A register

vector(5) Saved B register

vector(6) Saved X register

vector(7) Saved keys

vector(8) Not used

vector(9) Not used

filnam

INPUT. The name of the file containing the executable image,

namlen

INPUT. The length in characters (1-32) of filnam.

5-13 First Edition

SUBROUTINES, VOLUME III REST$$

code

OUTPUT. Standard error code.

Note

Use the PRIMOS command SEG to restore segmented V-mode runfiles
from a segment directory. Use the PRIMOS command RESUME, or
the EPP (executable program format) handling routines described
in Volume II of the Subroutines Reference Guide, to restore a
runfile from an EPF file.

Discussion

The saved parameters for a file previously written to the disk by the
SAVE$$ routine, the SAVE command, or the SAVE subcommand of the R-mode
loader, are loaded into the nine-halfword array vector. The code
itself is then loaded into memory using the starting and ending
addresses provided by vector(1) and vector(2).

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 5-14

PROGRAM CONTROL

RESU$$

Purpose

RESU$$ restores R-mode executable code from a file in the current UFD,
initializes registers from the saved parameters, and starts executing
the program.

Usage

DCL RESU$$ ENTRY <CHAR(*), FIXED BIN);

CALL RESU$$ (filnam, namlen);

Parameters

filnam

INPUT. The name of the file containing the code,

namlen

INPUT. The length in characters (1-32) of filnam.

Discussion

RESU$$ does not have a code argument. If an error occurs, an error
message is displayed and control returns to command level.

Note

Use the PRIMOS command SEG to restore segmented V-mode runfiles
from a segment directory. Use the PRIMOS command RESUME, or
the EPF (executable program format) handling routines described
in Volume II of the SUBROUTINES REFERENCE GUIDE, to restore a
runfile from an EPF file.

5-15 First Edition

SUBROUTINES, VOLUME III RESU$$

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 5-?16

PROGRAM CONTROL

SAVE$$

Purpose

SAVE$$ is used to save an R-mode executable image as a file in the
current UFD.

Usage

DCL SAVE$$ ENTRY ((9)FIXED BIN, CHAR(*), FIXED BIN, FIXED BIN);

CALL SAVE$$ (vector, filnam, namlen, code);

Parameters

vector

INPUT. A nine-halfword array the user sets up before calling
SAVE$$. vector(1) is set to an integer that is the first location
in memory to be saved and vector(2) is set to the last location to
be saved. The array is set at the user's option and has the
following meaning:

vector(1 Set to an integer that is the first location in
memory to be saved

vector(2) Set to last location to be saved

vector(3) Saved P register

vector(4) Saved A register

vector(5) Saved B register

vector(6) Saved X register

vector(7) Saved keys

vector(8) Not used

vector(9) Not used

filnam

INPUT. The name of the file to contain the code.

5-17 First Edition

SUBROUTINES, VOLUME III SAVE$$

namlen

INPUT. The length in characters (1-32) of filnatn.

code

OUTPUT. Standard error code.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 5-18

PROGRAM CONTROL

PHANTOM PROCESS CONTROL ROUTINES

This section describes the following subroutines:

Routine Function

LON$CN Switches logout notification on or off

LON$R Reads logout notification information.

PHNTM$ Starts a phantom process.

5-19 First Edition

SUBROUTINES, VOLUME III

LON$CN

Purpose

This subroutine is used to turn off, or turn on, logout notification.
When notification is turned off, phantom logout information is queued
(first-in/first-out). When notification is turned on, queuing is not
performed, but if there is any logout notification data to be received,
the default condition, PH_LOGO$, is raised.

See the discussion of LON$R for more information.

Usage

DCL LON$CN ENTRY (FIXED BIN);

CALL LON$CN (key);

Parameters

key

INPUT. Software interrupt status key:

0 Notify off

1 Notify on

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries:

R-mode: Not available.

Load NPFTNLB.

First Edition 5-20

PROGRAM CONTROL

LON$R

Purpose

This subroutine fetches or transfers logout information from storage to
a designated target area; it will do this unless it finds no
information to transfer.

Usage

DCL LON$R ENTRY (POINTER, FIXED BIN, BIT, FIXED BIN) ;

CALL LON$R (msgptr, msglen, more, code)/

Parameters

msgptr

INPUT -> OUTPUT. Area of memory in which to store the message
Its format is shown in the Discussion section.

[^ msglen

INPUT. Length of area in which to store message.

more

OUTPUT. Standard code.

0 No messages left on queue

1 Messages left on queue

code

OUTPUT. Standard error code.

E$NDAT No data found in queue

E$BFTS Some information lost during transfer
(msglen less than actual message length)

5-21 First Edition

SUBROUTINES, VOLUME III LON$R

Discussion ^

The target area is designated by the argument msgptr. The size of the
area pointed to by msgptr is designated by the argument msglen. The
area should be at least six halfwords in length. If it is shorter than
this, LON$R will only fetch as much information as msglen can hold.

The format of the target area is as follows:

HaIfword Number Information

1 Phantom's user number (fixed bin(15))

2 Time of logout (fixed bin(15))

3 Connect (elapsed) time in minutes (fixed bin(15))

4 CPU time in seconds (fixed bin(15))

5 I/O time in seconds (fixed bin (15))

6 Logout condition code (fixed bin(15)):

0 Normal logout

1 Abnormal logout

LON$R also passes back to its caller an indication whether there have
been more phantom logouts with their information stored in a queue.
This indication is contained within the argument more.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 5-22

PROGRAM CONTROL

PHNTM$

Purpose

This subroutine allows a process to start a phantom using either a
command input file or a CPL file. Use the .CPL suffix for CPL files
only; non-CPL programs must not have a .CPL suffix.

Usage

DCL PHNTM$ ENTRY (FIXED BIN, CHAR(32) , FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN, CHAR(128), FIXED BIN) ;

CALL PHNTM$ (cplflg, filename, name_len, funit, phant_user,
code, args, args_len) ;

Parameters

cplflg

INPUT. Source of the process: if 1, then a CPL program is being
started as a phantom; if 0, then a command input file is being
started as a phantom.

filename

INPUT. The name of the file to be started as a phantom. The
filename must end in .CPL if the program is a CPL program. Use the
.CPL suffix for CPL programs only.

name_len

INPUT. The number of characters in filename.

funit

INPUT. The file unit on which to open the phantom file.

phant_user

OUTPUT. The user number of the phantom,

code

OUTPUT. Standard error code; 0 means no error.

5-23 Fix ft Edition

SUBROUTINES, VOLUME III PHNTM$

args

INPUT. The arguments for a CPL phantom; a dummy argument must be
given for non-CPL phantoms.

args_len

INPUT. The number of characters in args; a dummy argument must be
given for non-CPL phantoms.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

First Edition 5-24

6
Conversion Routines

and Other Utilities

The first two sections of this chapter contain subroutines that convert
data from one form to another. The section NUMERIC CONVERSION ROUTINES
describes routines that convert character strings into numbers. The
section DATE CONVERSION ROUTINES describes routines that convert
date-time information from one format to another.

The third section, OTHER ROUTINES, describes routines that manipulate
data in ways not covered by other chapters of this volume. They
perform a binary search, encrypt a password, store and retrieve
characters in arrays, parse a character string into tokens, transfer
output to a buffer, move a block of memory, produce unique strings for
identification purposes, or match a name against a wildcard
specification.

6-1 First Edition

SUBROUTINES, VOLUME III

NUMERIC CONVERSION ROUTINES

This section describes the following subroutines:

Routine Function

CH$FX1 Converts string (decimal) to 16-bit integer.

CH$FX2 Converts string (decimal) to 32-bit integer.

CH$HX2 Converts string (hexadecimal) to 32-bit integer.

CH$0C2 Converts string (octal) to 32-bit integer.

First Edition 6-2

CONVERSION ROUTINES AND OTHER UTILITIES

CH$FX1

Purpose

CH$FX1 converts a character string of any length into a FIXED BIN (15)
number. The string is interpreted as a decimal number.

Usage

DCL CH$FX1 ENTRY (CHAR (*) VAR, FIXED BIN (15) [, FIXED BIN (15)]);

CALL CH$FX1 (string_to_convert/ result [, nonstandard_code]);

Parameters

st ring_to_convert

INPUT. CHARACTER (*) VARYING string that is to be converted.
Leading and trailing blanks are permitted. The minus sign (-) is
permitted, but the plus sign (+) is not. The string must represent
an integer; the decimal point is an invalid character. If the
numeric value of the string is greater than 327 67 or less than
-32767, the result is undefined.

result

OUTPUT. FIXED BINARY (15) number produced by the conversion. Zero
if the string was null or illegal.

nonstandard_code

OPTIONAL OUTPUT. Nonstandard error code. If this parameter is not
supplied and an error occurs, the CONVERSION condition is
signalled. The possible values of the code are

1 String contains embedded blanks
2 Overflow
3 Bad character in conversion
4 Illegal field

6-3 First Edition

SUBROUTINES, VOLUME III CH$FX1

Discussion

CH$FX1 is part of the PRIMOS binary conversion package. Other modules
in this package include

• CH$PX2, like CH$FX1 except that it returns a FIXED BIN (31)
value

• CH$0C2, like CHSFX2 except that it treats the string as octal

• CH$HX2, like CH$FX2 except that it treats the string as
hexadecimal

All have the same basic calling sequence.

These routines are useful if you have a file that contains numbers
stored as character strings and you wish to perform computations on the
numbers. If you use the error code argument, you have more control
over input errors than you do with the formatted I/O statements in most
languages. And although PL/I automatically performs a type conversion
if you assign a character string to a numeric variable, it also signals
the CONVERSION condition for bad input format. These subroutines,
however, enable you to gain information about input errors while you
avoid incurring a runtime error.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-4

CONVERSION ROUTINES AND OTHER UTILITIES

CH$FX2

Purpose

CH$FX2 converts a character string of any length into a FIXED BIN (31)
number. The string is interpreted as a decimal number.

Usage

DCL CH$FX2 ENTRY (CHAR (*) VAR, FIXED BIN (31) [, FIXED BIN (15)]);

CALL CH$FX2 (string_to_convert, result [, nonstandard_code]);

Parameters

string_to_convert

INPUT. CHARACTER (*) VARYING string that is to be converted.
Leading and trailing blanks are permitted. The minus sign (-) is
permitted, but the plus sign (+) is not. The string must represent
an integer; the decimal point is an invalid character. If the
numeric value of the string is greater than 2147483647 or less than
-2147483647, the result is undefined.

result

OUTPUT. FIXED BINARY (31) number produced by the conversion. Zero
if the string was null or illegal.

nonstandard_code

OPTIONAL OUTPUT. Nonstandard error code. If this parameter is not
supplied and an error occurs, the CONVERSION condition is
signalled. The possible values of the code are

1 String contains embedded blanks
2 Overflow
3 Bad character in conversion
4 Illegal field

Discussion

CH$FX2 is part of the PRIMOS binary conversion package. Other modules
in this package include CH$FX1, CH$HX2, and CH$OC2. See CH$FX1 for a
description of their functions.

6-5 First Edition

SUBROUTINES, VOLUME III CH$FX2

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-6

CONVERSION ROUTINES AND OTHER UTILITIES

CH$HX2

Purpose

CH$HX2 converts a character string of any length into a FIXED BIN (31)
number. The string is interpreted as a hexadecimal number.

Usage

DCL CH$HX2 ENTRY (CHAR (*) VAR, FIXED BIN (31) [, FIXED BIN (15)]);

CALL CH$HX2 (string_to_convert, result [, nonstandard_code]);

Parameters

s t ring_to_conve rt

INPUT. CHARACTER (*) VARYING string that is to be converted.
Leading and trailing blanks are permitted. The minus sign (-) is
permitted, but the plus sign (+) is not. The string must represent
an integer; the decimal point is an invalid character. If the
numeric value of the string is greater than 7FFFFFF or less than
-7FFFFFF, the result is undefined.

result

OUTPUT. FIXED BINARY (31) number produced by the conversion. Zero
if the string was null or illegal.

nonstandard_code

OPTIONAL OUTPUT. Nonstandard error code. If this parameter is not
supplied and an error occurs, the CONVERSION condition is
signalled. The possible values of the code are

1 String contains embedded blanks
3 Bad character in conversion

Discussion

CH$HX2 is part of the PRIMOS binary conversion package. Other modules
in this package include CH$FX1, CH$FX2, and"CH$0C2. See CHSFX1 for a
description of their functions.

CH$HX2 interprets the input string as the representation of a
hexadecimal number. It converts the string to a FIXED BIN (31) number,

6-7 First Edition

SUBROUTINES, VOLUME III CH$HX2

which can then be printed out as a decimal, octal, or hexadecimal
number, depending on the output procedure you use. The input string
FFF would print in decimal form as 4095. All ten digits, as well as
the uppercase characters A through F, are valid. Lowercase letters are
illegal and receive error code 3.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

First Edition 6-8

CONVERSION ROUTINES AND OTHER UTILITIES

CH$OC2

Purpose

CH$OC2 converts a character string of any length into a FIXED BIN (31)
number. The string is interpreted as an octal number.

Usage

DCL CH$OC2 ENTRY (CHAR (*) VAR, FIXED BIN (31) [, FIXED BIN (15)]);

CALL CH$0C2 (string_to_convert, result [, nonstandard_code]);

Parameters

string_to_convert

INPUT. CHARACTER (*) VARYING string that is to be converted.
Leading and trailing blanks are permitted. The minus sign (-) is
permitted, but the plus sign (+) is not. The string must represent
an integer; the decimal point is an invalid character. If the
numeric value of the string is greater than 17777777777 or less
than -17777777777, the result is undefined.

result

OUTPUT. FIXED BINARY (31) number produced by the conversion. Zero
if the string was null or illegal.

nonstandard_code

OPTIONAL OUTPUT. Nonstandard error code. If this parameter is not
supplied and an error occurs, the CONVERSION condition is
signalled. The possible values of the code are

1 String contains embedded blanks
3 Bad character in conversion

Discussion

CH$OC2 is part of the PRIMOS binary conversion package. Other modules
in this package include CH$FX1, CH$FX2, and CH$HX2. See CH$FX1 for a
description of their functions.

CH$0C2 interprets the input string as the representation of an octal
number. It converts the string to a FIXED BIN (31) number, which can

6-9 First Edition

SUBROUTINES, VOLUME III CH$OC2

then be printed out as a decimal, octal, or hexadecimal number,
depending on the output procedure you use. The input string 777 would
print in decimal form as 511. The digits 8̂ and 9̂ are illegal and
receive error code 3.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-10

CONVERSION ROUTINES AND OTHER UTILITIES

DATE CONVERSION ROUTINES

This section describes the following subroutines:

Routine Function

CV$DQS Converts binary date to quadseconds.

CV$DTB Converts ASCII date to binary format.

CV$FDA Converts binary date to ISO format.

CV$FDV Converts binary date to "visual" format.

CV$QSD Converts quadsecond date to binary format

6-11 First Edition

SUBROUTINES, VOLUME III

CV$DQS

Purpose

CV$DQS converts a coded binary date string to quadseconds. One
quadsecond equals 4 seconds.

Usage

DCL CV$DQS ENTRY (FIXED BIN(31), FIXED BIN{31))/

CALL CV$DQS (fs_date, quadseconds);

Parameters

fs_date

INPUT. The date to be converted, in FS (File System) format. The
format of a 32-bit encoded FS-format date is described in Appendix
C. You obtain this formatted date by calling the DATE$
system-information subroutine.

quadseconds

OUTPUT. Date as expressed in quadseconds since January 1, 1901
midnight.

Discussion

CV$DQS is part of the PRIMOS standard date package. It takes a
standard FS-format bit-encoded date and converts it to absolute
quadseconds since January 1, 1901 midnight (01-01-01.00:00:00).

You can use CV$DQS to get dates into numeric form so that you can
perform computations on them. For simple comparisons of dates, you can
use the FS-format date returned by DATE$.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-12

CONVERSION ROUTINES AND OTHER UTILITIES

CV$DTB

Purpose

CV$DTB converts an ASCII-format date to binary format.

Usage

DCL CV$DTB ENTRY (CHAR(128) VAR, FIXED BIN(31) , FIXED BIN);

CALL CV$DTB (ascii_date, fs_date, code);

Parameters

ascid date

INPUT. The ASCII-format date to be converted. Legal formats are
described below.

f s_date

OUTPUT. The bit-encoded FS-format date returned. The format of a
32-bit encoded FS-format date is described in Appendix C.

code

OUTPUT. Standard error code. (See Chapter 1 for information about
the standard error codes.) The possible value is

E$BPAR The passed date string is illegal

Discussion

CV$DTB is part of the PRIMOS standard date package. It converts an
ASCII-format date to FS (bit-encoded) format. Standard ASCII-format
dates can have any of the following three formats:

YY-MM-DD.HH:MM:SS{.DOW} (ISO format)
MM/DD/YY.HH:MM:SS{.DOW} (USA format)
DD MMM YY HH:MM:SS{Day-of-week} (Visual format)

6-13 First Edition

SUBROUTINES, VOLUME III CV$DTB

Omitted date fields are replaced by today's date information; omitted
time fields are replaced by zeros. If the string is null, zero is
returned. The day-of-week field is checked for consistency only.

CV$DTB is useful if you need to compare dates that may be stored in
different ASCII formats. Once you convert them to FS format, you can
perform comparisons on them.

If you need to obtain the current date and time in FS format, use the
DATE$ system-information subroutine.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-14

CONVERSION ROUTINES AND OTHER UTILITIES

CV$FDA

Purpose

CV$FDA converts a coded binary date string to ISO format.

Usage

DCL CV$FDA ENTRY (FIXED BIN(31), FIXED BIN, CHAR(21));

CALL CV$FDA (fs_date, day_of_week, formatted_date);

Parameters

fs_date

INPUT. The date to be converted, in FS (File System) format. The
format of a 32-bit encoded FS (File System)-format date is
described in Appendix C. You obtain this formatted date by calling
the DATE$ system-information subroutine.

day_of_week

OUTPUT. A number corresponding to the day of the week. Sunday is
0, Monday is 1, and so on.

formatted_date

OUTPUT. ASCII-format date in ISO format, as described below.

Discussion

CV$FDA is part of the PRIMOS standard date package. It converts an FS
(File System)-format date string to ISO format.

ISO format dates are designed primarily for machine readability. Dates
that are to be read primarily by people should be converted with
CV$FDV."

The date returned is in the format "YY-MM-DD.HH:MM:SS.DOW" . An example
is

86-04-15.17:05:36.Tue

6-15 First Edition

SUBROUTINES, VOLUME III CV$FDA

If the passed date is illegal, formatted_date is set to
** invalid date **, and day_of_week is set to -1.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-16

CONVERSION ROUTINES AND OTHER UTILITIES

CV$FDV

Purpose

CV$FDV converts a coded binary date string to "visual" format.

Usage

DCL CV$FDV ENTRY (FIXED BIN(31), FIXED BIN, CHAR(28) VAR);

CALL CV$FDV (fs_date, day_of_week, formatted_date);

Parameters

fs_date

INPUT. The date to be converted, in FS (File System) format. The
format of a 32-bit encoded FS-format date is described in Appendix
C. You obtain this formatted date by calling the DATE$
system-information subroutine.

day_of_week

OUTPUT. A number corresponding to the day of the week. Sunday is
0, Monday is 1, and so on.

formatted_date

OUTPUT. ASCII-format date in visual format, as described below.

Discussion

CV$FDV is part of the PRIMOS standard date package. It converts an
FS-format date string to "visual" format.

Visual format dates are designed primarily to be read by users.
Because they contain blanks and are not ordered in a strictly
decreasing way, they are not particularly suited for machine
readability. Dates that must be machine-readable should be converted
with CV$FDA.

The date returned is in the format "DD MMM YY HH:MM:SS day_of_week".
An example is

15 Apr 86 17:05:36 Tuesday

6-17 First Edition

SUBROUTINES, VOLUME III CV$FDV

If the passed date is illegal, formatted_date is set to
** invalid date **, and day_of_week is set to -1.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-18

CONVERSION ROUTINES AND OTHER UTILITIES

CV$QSD

Purpose

CV$QSD converts a date and time in quadsecond form into FS (File
System) format. One quadsecond equals 4 seconds. CV$QSD is the
reverse of CV$DQS.

Usage

DCL CV$QSD ENTRY (FIXED BIN(31), FIXED BIN(31));

CALL CV$QSD (quadseconds, fs_date);

Parameters

quadseconds

INPUT. The date to be converted, expressed in quadseconds since
January 1, 1901 midnight. You usually obtain this value by calling
the DATE$ function and then converting its output to quadseconds

f^ with CV$DQS.

fs_date

OUTPUT. The date in FS (File System) format. The format of a
32-bit encoded FS-format date is described in Appendix C.

Discussion

CV$QSD is part of the PRIMOS standard date package. It takes a date in
absolute quadseconds since January 1, 1901 midnight (01-01-01.00:00:00)
and converts it to standard FS-format bit-encoded date format.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-19 First Edition

SUBROUTINES, VOLUME III

OTHER ROUTINES

This section describes the following subroutines

Routine Function

BIN$SR Perform binary search in ordered table.

ENCRYPT$ Encrypt login validation passwords.

GCHAR Get a character from an array.

GTSPAR Parse character string into tokens.

IOA$RS Provide free-format output to a buffer.

MOVEW$ Move a block of memory.

NAMEQ$ Compare two character strings.

SCHAR Store a character into an array location.

UID$BT Return unique bit string.

UID$CH Convert UID$BT output into character string.

First Edition 6-20

CONVERSION ROUTINES AND OTHER UTILITIES

BIN$SR

Purpose

BIN$SR performs a binary search in an ordered table kept in part of a
segment. The table consists of fixed-size entries indexed by a varying
character string. If the routine finds the entry searched for, it
returns a pointer to the entry. If it does not find it, it indicates
where the missing entry should be inserted into the table. There are
three restrictions:

1. The table must fit in a 64K halfword (128K byte) segment.

2. All entries must be the same size.

3. All offsets in the segment must be zero modulo the entry size
in halfwords.

Usage

DCL BIN$SR ENTRY (CHAR (*) VAR, FIXED BIN, PTR, PTR, PTR,
FIXED BIN);

CALL BIN$SR(entry, entry_size, start_ptr, end_ptr, spot_ptr,
code);

Parameters

entry

INPUT. A varying character string that contains the index name of
the entry to be searched for.

entry_size

INPUT. The size of each entry in half words, including the space
for the index name.

start_ptr

INPUT. A pointer to the first entry in the table.

end_ptr

INPUT. A pointer to the last entry in the table.

6-21 First Edition

SUBROUTINES, VOLUME III BIN$SR

spot_ptr

OUTPUT. A pointer either to the entry or to the place to insert
the entry.

code

OUTPUT. A nonstandard error code with the following meanings:

Value Meaning

0 The entry was found, and spot_ptr points to it.

1 The entry was not found, and spot_ptr points to where
it should be inserted.

2 The arguments to the call were bad; either start_ptr
and end_ptr did not point to the same segment, or the
halfword offset of either pointer was not zero modulo
entry_size.

3 The entry was not found, and the place to insert it,
pointed to by spot_ptr, is not in the current segment.
This means that the segment is full.

Discussion

This routine can also be used to handle a table in which the indices
are integers rather than varying character strings. The following data
structure should be used:

DCL 1 entry,
2 lenc FIXED BIN,
2 name FIXED BIN,
2 info FIXED BIN;

In this structure, entry.lenc is the length of the index in bytes.
en try, name is the index; it can be either FIXED BIN (15) or FIXED
BIN(31). If it is FIXED BIN(15), then entry.lenc is 2; if it is FIXED
BIN(31), then entry.lenc is 4. entry.info is arbitrary; it can be any
type or size, not just FIXED BIN. The entry length for this structure
is (1 + size(name) + size(info)), but only the name field is used in
locating the entry.

First Edition 6-22

BIN$SR CONVERSION ROUTINES AND OTHER UTILITIES

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-23 First Edition

SUBROUTINES, VOLUME I I I

ENCRYPT$

Purpose

ENCRYPT$ encrypts login validation passwords for use by the User
Registration feature of PRIMOS. Users who need a one-way password
encryption algorithm may find it useful.

Usage

DCL ENCRYPT$ ENTRY (CHAR(16) VAR) RETURNS (CHAR(16));

encrypted_password = ENCRYPT$ (unencrypted_password);

Parameters

unencrypted_password

INPUT. An ASCII login validation password up to 16 characters
long.

encrypted_password

RETURNED VALUE. The encrypted value of the unencrypted password.

Discussion

Login validation passwords may contain any characters other than PRIMOS
reserved characters. (See the Prime User's Guide for a list of these
characters.) Lowercase alphabetic characters are mapped to uppercase.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-24

CONVERSION ROUTINES AND OTHER UTILITIES

GCHAR

Purpose

GCHAR gets a character from an array. Its counterpart is SCHAR, which
stores a character in an array. SCHAR is described later in this
section.

Since GCHAR is strictly a FORTRAN tool, its Usage information is given
in FORTRAN format.

Usage

INTEGER*2 char, array(1), index

char = GCHAR(LOC(array), index)

Parameters

LOC(array)

INPUT. A pointer to the array of characters from which the
character is to be retrieved.

index

INPUT/OUTPUT. Index of the location of char in the array.
Incremented by 1 after each call to GCHAR.

char

RETURNED VALUE. The character returned, in the right-hand byte of
a 16-bit integer.

Discussion

GCHAR is helpful in retrieving character information for a FORTRAN
program.

You must load the pointer index with position (X - 1) in order to get
the character from position X in the array. For example, if the
character is in position 1, then you must initialize index to 0. After
the operation, index is incremented by 1.

6-25 First Edition

SUBROUTINES, VOLUME III GCHAR

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

/^\

First Edition 6-26

CONVERSION ROUTINES AND OTHER UTILITIES

GT$PAR

Purpose

The subroutine GT$PAR is used to parse a character string into tokens
separated by three types of characters. The three types are white
spaces, quote characters, and break characters. A single token is
returned by each call to GT$PAR.

Usage

DCL GT$PAR ENTRY(BIT(16) ALIGNED,
CHAR(*> VAR,
CHAR(*) VAR,
CHAR<*) VAR,
CHAR(*) VAR,
CHAR<*) VAR,
FIXED BIN,
1/
2,
3 BIT(ll),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(l),

2 CHAR(l) ALIGNED,
FIXED BIN);

CALL GT$PAR(key, white, quote, break, source_str, token_str,
token_str_size, info, next_char);

Parameters

key

INPUT. A bit string of length 16. Overlaying it is the following
structure:

1 key,
2 mbz BIT (11) ,
2 l e a v e _ t r a i l i n g _ w h i t e _ s p a c e B I T (l) ,
2 no_coiranent B I T (l) ,
2 quote_cont B I T (l) ,
2 keep_quotes BIT(l),
2 no_shift BIT(l);

6-27 First Edition

SUBROUTINES, VOLUME III GT$PAR

key.mbz

Reserved for future expansion.

key.leave_trailing_white_space

'l'B tells GT$PAR not to skip white space at the end of the
token. This will cause the value returned in
info.delimiter (see below) to be a white space character,
even if there is a break character after the white space
character(s). Next_char will point to the character after
the first white space character found.

key. no_comment

'O'B tells GT$PAR that the character sequence /* is to
signal the end of the line and the start of a comment.
'l'B means that no comment delimiter checking is done.

key.quote_cont

'l'B tells GT$PAR to assume that the source character
string has an info.delimiter before the first character.
This is useful in handling a quoted token that spans
multiple strings.

key.keep_quotes

'l'B tells GT$PAR not to remove one level of quote
characters after processing them. This means that a quoted
token can be correctly reprocessed by another parser as a
single literal token.

key.no_shift

'l'B tells GT$PAR not to convert nonquoted lowercase
characters to uppercase. 'O'B tells it to convert
nonquoted lowercase characters to uppercase.

white

INPUT. A varying character string containing all the characters
that are to be considered as a white space character. There can be
any number and mixture of white space characters between tokens.
Any leading and/or trailing white space character(s) are removed
from a token.

quote

INPUT. A varying character string containing all the characters
that are to.- be considered as quote characters. All characters
between a matched pair of quote characters (including different
quote characters) are treated literally. If there are two of the
current quote characters in a row, then a single quote character

First Edition 6-28

GT$PAR CONVERSION ROUTINES AND OTHER UTILITIES

will be placed in the token and will not be considered the end of
the quoted string. (If the key.keep_quotes bit is a 'l'B, then all
quotes will be kept). For example, if the quote characters were '
and ", then each of the following strings would be considered a
single token:

String Token

'foo bars'' inc.'
foo' bars" 'inc.
"It was John's ball ..."
" a "mix" of ,,,,quotes",,,,

foo bars' inc.
foo bars" inc.
It was John's ball ..
a ''mix'' of "quotes'

break

INPUT. A varying character string containing all the characters
that are to be considered as a break character. There is at most
one break character between each token. Since a single break
character always separates tokens, two break characters in a row
have a null token between them. Since leading white space
characters are ignored (see above), there can be any number of
white space characters between two break characters and that token
will still be null.

source_str

INPUT. A varying character string containing the text to be
parsed.

token_str

OUTPUT. A varying character string into which GT$PAR will place
the token.

token_str_size

INPUT. The maximum length of token_str in characters. If the
token is longer than this, it will be truncated, and
info.flags•truncated (see below) will be set to 'l'B.

info

INPUT/OUTPUT. The following structure, into which GT$PAR will
place information about the token returned in token_str:

1 info,
2 flags,

3 mbz BIT(11),
3 partial BIT(l),
3 has_quotes BIT(l),
3 truncated BIT(l),
3 delimiter_eol BIT(l),
3 eol BIT(l),

2 delimiter CHAR(l) ALIGNED;

6-29 First Edition

SUBROUTINES, VOLUME III GT$PAR

info.flags.mbz

Reserved for future expansion.

info.flags.partial

'l'B if there was no closing quote for the current token.
The quote character is placed in info.delimiter.

info.flags.has_quotes

'l'B if the token is a quoted string.

info.flags.truncated

'l'B if and only if the token was too long to fit into
token_str.

info.flags.delimiter_eol

'l'B if this token was delimited by the end of the string.

info.flags.eol

'l'B if there is no token available because the end of
source_str has been reached.

info.delimiter

If info.flags.partial is 'l'B, then info.delimiter is the
quote character. If info.flags.delimiter_eol is 'l'B, then
info.delimiter is undefined. Otherwise, info.delimiter is
the character that delimited the end of the token.

Only if key.quote_cont is 'l'B is info.delimiter valid as
input to GT$PAR; info.flags is never used for input. If
key.cruote_cont is 'l'B, then info.delimiter contains the
current quote character for a quoted token that spans
multiple strings.

next_char

INPUT/OUTPUT. The index of the next character to be examined in
the source string (character 1 is the first character in the
string). If you wish to start parsing at the start of the string,
next_char should be set to 1 before the call to GT$PAR. After
GT$PAR returns, next_char will point to the character after the
delimiting character. This means that the current place in the
string can be saved and a particular token can be reparsed if so
desired.

First Edition 6-30

GT$PAR CONVERSION ROUTINES AND OTHER UTILITIES

Discussion

Any of the white/ quote, or break arguments can be the null string.
The null string means that there are none of that type of delimiter.

Example:

DCL TOKEN CHAR(40) VAR;
DCL NEXT FIXED BIN;
NEXT = 1;
CALL GT$PAR('0'B, ' ', '"', '.', ' A line.', TOKEN, 40, INFO,

NEXT);

The first time the CALL statement is executed, it returns NEXT = 4, all
info.flags = 'O'B, info.delimiter = ' ', and TOKEN = 'A' .

If the CALL statement is executed again, it returns NEXT = 9, all
info.flags = 'O'B, info.delimiter = '.', and TOKEN = 'LINE'.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-3.1 Fixst Edition

SUBROUTINES, VOLUME I I I

lOAJpRS ^

Purpose

IOA$RS provides free-format output to a buffer. It is similar to IOA$,
which provides free-format output to the terminal. IOA$ is described
in Chapter 3 of this volume.

Usage

DCL IOA$RS ENTRY (CHAR(*), FIXED BIN, FIXED BIN, CHAR(*), FIXED BIN
[, any type, ... any type]);

CALL IOA$RS (buffer, bufsize, buflen, control, conlen
[, argl, ... argn]);

Parameters

buffer

OUTPUT. The character string into which IOA$RS writes the
formatted text. /es^

bufsize

INPUT. The capacity of buffer, in characters: that is, buffer
must be able to hold a maximum of bufsize characters. buffer is
padded with blanks to this stated capacity if the length of the
generated text is less than bufsize.

buflen

OUTPUT. The number of characters of text generated by the
formatting and conversion operations.

control

INPUT. A character string that specifies both the literal text to
be output and the conversion operations to be performed on the
arguments. For information on the format of this string, see the
discussion of IOA$.

conlen

INPUT. The length of control, in number of characters. For more
information, see the discussion of IOA$ in Chapter 3.

First Edition 6-32

IOA$RS CONVERSION ROUTINES AND OTHER UTILITIES

argl, ... argn

OPTIONAL INPUT. Optional arguments, which can be of any data type.
For more information, see the discussion of IOA$ in Chapter 3.

Discussion

IOA$RS is identical to IOA$ except that it puts the formatted text into
a character buffer variable, rather than writing it directly to the
terminal. In addition, the length of the buffer is specified by the
calling program, whereas IOA$ imposes a 400-character limit on output
volume.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-33 First Edition

SUBROUTINES, VOLUME I I I

MOVEW$

Purpose

MOVEW$ moves a block of memory efficiently from one place to another.

Usage

DCL MOVEW$ ENTRY (POINTER, POINTER, FIXED BIN);

CALL MOVEW$ (from_ptr, to_ptr, num_halfwords) ;

Parameters

froitLjitr

INPUT. Pointer to place to move from.

to_ptr

INPUT. Pointer to place to move to.

nunuJia If words '

INPUT. Number of halfwords to move. A halfword is 16 bits.

Discussion

Make sure that the two areas of memory you are using do not overlap

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-34

CONVERSION ROUTINES AND OTHER UTILITIES

NAMEQ$

Purpose

NAMEQ$ is a logical function that compares two character strings for
equivalence.

Usage

DCL NAMEQ$ ENTRY(CHAR(*), FIXED BIN, CHAR(*) , FIXED BIN)
RETURNS(FIXED BIN);

eqnam = NAMEQ$ (stringl, lenl, string2, len2);

Parameters

stringl

INPUT. The first string for comparison,

lenl

INPUT. The length in characters of strinql.

string2

INPUT. The second string for comparison.

Ien2

INPUT. The length in characters of string2.

eqnam

RETURNED VALUE. 1 if the strings are the same, 0 if they are not.

Discussion

NAMEQ$ performs a character-by-character comparison of strinql and
string2 for length lenl or len2, whichever is shorter. Then, if the
two strings are identical so far and the next character in the longer
string is a blank, NAMEQ$ returns 1; if not, it returns 0. For
instance, a comparison of HOW and HOW Y returns the value 1 (true),
while a comparison of HOW and HOWDY returns 0 (false).

6-35 First Edition

SUBROUTINES, VOLUME III NAMEQ$

You are likely to need this subroutine only if you are using FORTRAN.
Other high-level languages have their own facilities for string
comparison.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 6-36

CONVERSION ROUTINES AND OTHER UTILITIES

SCHAR

Purpose

SCHAR stores a character into an array location. Its counterpart is
GCHAR, which retrieves a character from an array. GCHAR is described
earlier in this section.

„ Since SCHAR is strictly a FORTRAN tool, its Usage description is given
in FORTRAN format.

Usage

INTEGER*2 array(1), index, char

CALL SCHAR (LOC(array), index, char)

Parameters

LOC(array)

INPUT — > OUTPUT. Pointer to the array of characters in which the
character is to be stored.

index

INPUT/OUTPUT. Index of the location of char in the array.
Incremented by 1 after each call to SCHAR.

char

INPUT. Character to be stored. It must be in the right-hand byte
of a 16-bit integer.

Discussion

SCHAR is helpful for storing character data from a FORTRAN program.

If you are storing characters starting with the beginning of an array,
the pointer index, index, must be initialized to 0. It is incremented
by 1 after each call to SCHAR. If you are not storing the character in
the first position in the array, then you must load index with position
(X - 1) in order to store the character at position X.

6-37 First Edition

SUBROUTINES, VOLUME III SCHAR

The right side of char holds the character for storage. For example,
to store the single character A you load char with A — A in the right
side of the halfword and the blank character (or any other character)
in the left side of the halfword.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Note

Make sure that FORTRAN_IO_LIBRARY. RUN is specified in your
search rules.

First Edition 6-38

CONVERSION ROUTINES AND OTHER UTILITIES

UID$BT

Purpose

Returns a unique b i t s t r i n g for iden t i f i ca t ion purposes.

Usage

DCL UID$BT ENTRY (BIT (48) ALIGNED);

CALL UID$BT (unique_bit_string);

Parameters

unique_bit_string

OUTPUT. Unique bit string returned.

Discussion

The string is guaranteed to be unique. This bit string is not random;
it is formed by concatenating the current date and time, in FS (File
System) format, with a 16-bit counter. (The format of a 32-bit encoded
FS-format date is described in Appendix C.) If a random number is
required rather than a unique identifier, the applications library
routine RAND$A should be used.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-39 First Edition

SUBROUTINES, VOLUME I I I

UID$CH ^

Purpose

Given a unique bit string, returns a unique character string based on
the bit string. This string can be used as a filename.

Usage

DCL UID$CH ENTRY (BIT (48) ALIGNED, CHAR (13));

CALL UID$CH (unique_bit_string, character_string);

Parameters

unique_bit_string

INPUT. Unique bit string, preferably generated by UID$BT (see
UID$BT above).

character_string

OUTPUT. The resulting character string. The string is formed by
converting each 4-bit chunk of the bit string into one of 16
consonants and prefixing the result with a $.

Discussion

UID$CH is designed to be used with bit strings generated by UID$BT.
See UID$BT for details.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-40

7
Condition Mechanism

This chapter describes subroutines used in the implementation of the
condition mechanism. The first part of this chapter describes routines
used to signal and catch conditions. The second part of this chapter
describes three routines used to control automatic signalling of the
EXIT$ condition. The third part of this chapter describes the data
structure formats associated with the condition mechanism. Most
programs do not use these data structures.

For a list of the standard conditions raised by Prime software, see
Appendix A.

A condition is an unscheduled software procedure call (or block
activation) resulting from an "unusual event." Such an unusual event
might be a hardware-defined fault, an error situation that cannot be
adequately handled in the current subroutine, or an external event such
as a QUIT from the user terminal. The condition mechanism

• Provides a consistent and useful means for system software to
handle error conditions.

• Provides the capability for programs to handle error conditions
without forcing a return to command level.

• Provides support for the condition mechanism of ANSI PL/I.

When such an event happens, PRIMOS is asked to find a handler (an
on-unit). PRIMOS accomplishes this by searching the process's stack
for frames that have predefined on-units that can handle that named

7-1 First Edition

SUBROUTINES, VOLUME III

condition. If PRIMOS finds a handler, the handler is invoked and, upon
return from the handler, one of three things can occur:

• Execution can return to the program at the point the event was
encountered, and the program then continues.

• Execution can return to the program at some other point, using
the mechanism called "nonlocal GOTO."

• The system can continue to search for other handlers for the
named event.

The on-unit controls which of these three paths is taken.

The subroutines described in this chapter allow the programmer to
create and use on-units. These features are available to programmers
using all Prime-supplied languages. The descriptions below use mostly
PL/I terminology, with special advice for FORTRAN users.

Appendix A contains a list of system-defined conditions. Because
PRIMOS error handling uses conditions, the list of condition names is
helpful in interpreting error messages printed by PRIMOS.

CREATING AND USING ON-UNITS

Condition handlers are called on-units. They can be procedures or PL/I
begin blocks. A begin block results from a PL/I ON statement, but a
procedure results from the use of the following subroutines:

MKONU$

MKON$F

' MKON$P

The use of these subroutines is the only way to create an on-unit in a
non-PL/I environment. See Table 7-1 to determine which subroutine to
use.

The correct on-unit is found by searching backwards through the call
stack until an appropriate procedure activation is encountered. A
appropriate procedure activation is one that has previously created an
on-unit for the condition. If none is found, but if an on-unit for the
special condition ANY$ does exist, the ANY$ on-unit is selected as the
default on-unit.

All users are automatically protected by PRIMOS, which catches all
conditions as a last resort and takes appropriate default action.

First Edition 7-2

CONDITION MECHANISM

Table 7-1
Subroutines Appropriate to Various Languages

Action

Create an
on-unit

Signal a
condition

Cancel (revert)
an on-unit

Nonlocal GOTO

Make PL/I-
compatible label

FTN

MKON$F

SGNL$F

RVON$F

PL1$NL

MKLB$F

Programming Language(1)

F77, C,
Pascal

MKON$P

SGNL$F

RVON$F

PL1$NL

MKLB$F

PL/I

MK0N$P(2)

SIGNL$

RVONU$(4)

(5)

(5)

PMA

MK0NU$(3)

SIGNL$

RVONU$

PL1$NL

MKLB$F

Notes to Table 7-1

The CPL language, not shown in this table, also supports
the condition mechanism, but without the use of these
subroutine calls. See EXAMPLES OF PROGRAMS later in this
chapter.

MKON$P is required for programmer-named conditions.
Several predefined conditions are supported by the
language's ON statement. It is also possible to use MKONU$
instead of MKON$P. See MKONU$ under CONDITION MECHANISM
ROUTINES later in this chapter.

You must provide an extended stack area, and, while the
condition handler is active, you must not modify the
character-varying variable that holds the condition name.

Use the language-supplied
predefined conditions.

REVERT statement for PL/I

Supported directly by the programming language.

7-3 First Edition

SUBROUTINES, VOLUME III

An on-unit can be invalidated by the PL/I REVERT statement or by using
the following subroutines:

RVONU$

RVON$F

Again, use Table 7-1 to select the proper subroutine.

The condition mechanism is activated whenever a condition is raised. A
condition is raised implicitly by some exception being detected during
regular program execution. A condition may be raised explicitly by the
PL/I signal statement or by a call to the following subroutines:

SIGNL$

SGNL$F

Every on-unit has the name of the condition it is handling. A
condition name is a character string (up to 32 characters) and may
represent a system-defined condition if the name is one reserved for
system use. If the name is not one reserved for system use, the
on-unit represents a user-defined condition. The system-defined
conditions are described in Appendix A.

It is extremely important that all on-unit procedures take at least one
argument.

On-unit Actions

An on-unit has several options for action it may take. An on-unit may

• Perform application-specific tasks (such as closing or updating
files).

• Repair the cause of the condition and then resume execution.

• Decide that normal flow can be interrupted and that the program
can be reentered at a "known point" by performing a nonlocal
GOTO to some previously defined label.

• Signal another condition.

• Transfer the process to the command level.

• Continue to search for more on-units.

• Run diagnostic routines.

First Edition 7-4

CONDITION MECHANISM

FORTRAN Considerations

The use of on-units and of nonlocal GOTOs is somewhat restricted from
FORTRAN, since there are no internal procedures or blocks. Therefore,

• FORTRAN on-units must be subroutines that, by definition, are
not internal to the subroutine or main program creating the
on-unit.

• Nonlocal GOTOs work only to a previous stack level since the
target statement label belongs to the caller of the subroutine
performing the nonlocal GOTO.

A full-function nonlocal GOTO requires that the target label identify
both a statement and a stack frame of the program that contains the
statement. The subroutine MKLB$F creates a PL/I-compatible label and
the subroutine PL1$NL performs a nonlocal GOTO to a specified target
label. Labels produced by MKLB$F are acceptable to PLl$NL.

This chapter documents subroutines in PL/I notation. FORTRAN users can
convert between PL/I and FORTRAN data types by using Table 7-2.

Table 7-2
Conversion of PL/I to FORTRAN Data Types

PL/I

char(n)

char(n) var

fixed bin(15)

fixed bin(31)

label

entry variable

ptr options (short)

bit (n)

FORTRAN

INTEGER((n+l)/2)

INTEGER(((n+1)/2)+1)

INTEGER*2

INTEGER*4

REAL*8

REAL*8

INTEGER*4

INTEGER*2 (K=n<=16)

7-5 First Edition

SUBROUTINES, VOLUME III

The PL/I interfaces use the PL/I data type "character (*) varying",
which is not available in FTN. However, 1977 ANSI FORTRAN (F77)
includes the data type "character*n", which is the equivalent of PL/1
"character(n), nonvarying". Interfaces are provided that use the
nonvarying character strings. It is possible to simulate varying
character strings in FORTRAN with an INTEGER*2 array in which the first
element contains the character count and the remaining elements contain
the characters in packed format. For example:

PL/I
DCL NAME CHAR(5) VARYING STATIC INITIAL ('QUITS');

FORTRAN
INTEGER*2 NAME(4)
DATA NAME/5, 'QUIT$'/

For information on mapping PL/I data types to other languages, such as
Pascal, COBOL, and C, see Volume I of the Subroutines Reference Guide.

On-units must be carefully designed not to require reentrancy which is
not supported by FORTRAN. See how I/O must be handled in EXAMPLES OF
PROGRAMS, below.

Default On-unit

The default on-unit, ANY$, can be created to intercept any condition
that might be activated during a procedure. (The ANY$ on-unit is
created by a call to MKONU$ or MKON$F.)

When a condition is raised, the condition mechanism first searches for
an on-unit for the specific condition. If a specific on-unit exists,
it is selected. Otherwise, if an ANY$ on-unit exists, the ANY$ on-unit
is selected.

Your programs should avoid the use of the ANY$ on-unit. Your ANY$
on-unit should not attempt to handle most system-defined conditions,
but should pass them on to the next on-unit by simply returning.
Whenever an ANY$ on-unit is invoked, the continue switch is set and
your ANY$ on-unit must return with the continue switch still set.
Failure to do so can cause problems with PRIMOS.

The continue switch indicates to the condition mechanism whether the
on-unit that was just invoked (or any of its dynamic descendants)
wishes the backward scan of the stack for on-units for this condition
to continue upon the on-unit's return. The subroutine CNSIG$ is used
to request that the switch be turned on. This switch is cleared before

First Edition 7-6

CONDITION MECHANISM

each on-unit (except ANY$) is invoked. See the discussion of the
continue switch at cflags.continue_sw under DATA STRUCTURE FORMATS
later in this chapter.

Note

The Prime Symbolic Debugger (DBG) uses the standard condition
ILLEGAL_INST$ internally. If you create an on-unit for
ILLEGAL_INST$, or if an on-unit for ANY$ handles the
ILLEGAL_INST$ condition, such an on-unit must continue the
signal if the program is to be successfully debugged using DBG.

EXAMPLES OF PROGRAMS

Below are sample programs in FORTRAN 66 (FTN), FORTRAN 77 (F77), PL/I
(PLl), and CPL that use an on-unit to trap the QUIT$ condition. The
programs are similar, but not identical, in operation.

Note

In both FORTRAN examples (FTN and F77), the on-unit must avoid
using standard FORTRAN I/O, and instead uses TNOU. The
condition has arisen in the middle of FORTRAN input, and since
FORTRAN I/O is not reentrant, use of FORTRAN I/O by the on-unit
would destroy the environment to which it eventually returns.
PL/I supports reentrancy and does not require this precaution.

FORTRAN Example

C Program to demonstrate on-unit in FTN
C

EXTERNAL CATCH
INTEGER*2 BREAK(3), BREAKL, I
DATA BREAK/'QUITS'/
BREAKL = 5
CALL MKON$F(BREAK, BREAKL, CATCH)
WRITE(1,300)

300 FORMAT('Please enter an integer, then RETURN.')
100 CONTINUE

READ(1,200) I
200 FORMAT(18)

IF (I .EQ. 0) GOTO 400
WRITE(1,330)

330 FORMAT('Again, 0 to exit, BREAK to test on-unit.')
GOTO 100

400 STOP
END

7-7 First Edition

SUBROUTINES, VOLUME III

C
SUBROUTINE CATCH(PNTR)
INTEGER*4 PNTR
CALL TNOUCWe caught a quit!',17)
PAUSE 1
CALL TNOU('You"re back into the input loop again.',38)
RETURN
END

FORTRAN 77 Example

C Program to demonstrate on-unit in F77
C

external catchit
integer*2 break_length
character*5 break/'QUIT$'/
break_length = 5
call mkon$p(break,break_length, catchit)
print*, 'Please enter an integer, then RETURN.'

100 continue
read(l,*) i
if (i.eq.O) goto 200
print*, 'Again, 0 to exit, BREAK to test on-unit.'
goto 100

200 end
subroutine catchit (pntr) /f^|
integer*4 pntr
call tnou('We caught a quit!' ,ints (17))
pause 1
call tnou('You"re back into the input loop again.' ,ints (38))
return
end

PL/I Examples

/* Program to demonstrate on-unit in PL1 */

ex_pll: procedure options (main);

del mkon$p entry(char(*), fixed bin, entry);
del (break_length, i) fixed bin(15);
del (break) character(5) static initial('QUIT$');
break_length = 5 ;
call mkonSp(break, break_length, catchit);
put skip list ('Please enter an integer, then RETURN.');
get list (i) ;
do while (i A=s 0) ;

put skip list ('Again, 0 to exit, BREAK to test on-unit.');
get list (i);

end;
stop; - /^v

First Edition 7-8

CONDITION MECHANISM

catchit: proc (pntr);
del pntr pointer;
put skip list ('We caught a quit!');
put skip list('You"re back into the input loop again.');
return;

end;
end;

/* Modified program to demonstrate on-unit in PL1 */
/* Shows use of MKONU$ (instead of MKON$P) */

ex_pll: procedure options (main);
declare mkonu$ entry(character(32) varying, entry)

options(shortcall(20));
declare (break) character(32) static initial('QUIT$') varying;
declare i fixed binary(15);
call mkonu$(break, catchit);
put skip list ('Please enter an integer, then RETURN.');
get list (i) ;
do while (i A= 0);

put skip list ('Again, 0 to exit, BREAK to test on-unit.');
get list (i);

end;
stop;

(^ catchit: procedure (pntr);
declare pntr pointer;
put skip list ('We caught a quit!') ;
put skip list('You''re back into the input loop again.');
return;

end;
end;

CPL Example

/* Program to demonstrate on-unit in CPL.
/* Note that CPL cannot call a make-on-unit
/* subroutine. Instead, we show the use of
/* the ON statement provided by CPL.

Son QUIT$ firoutine catchit
type 'Please enter an integer, then RETURN.'
&set_var i := [response '']
&do &while %i% A= 0

type 'Again, 0 to exit, BREAK to test on-unit
&set_var i := [response "]

Send
Sstop

7-9 First Edition

SUBROUTINES, VOLUME III

&routine catchit j
type 'We caught a quit!'
type 'You''re back into the input loop again.'
&return

ADDITIONAL PROGRAM EXAMPLES

The programs presented below show strategies for using the condition
mechanism. The examples include

• CPL programs that handle on-units for a program that does not
itself use on-units

• A FORTRAN 77 (F77) program that shows reentering a program with
the PRIMOS REN command. The program also shows the use of the
nonlocal GOTO

• A FORTRAN 66 (FTN) program that handles QUIT$ and shows the
nonlocal GOTO

• A PL/I (PL1) program that handles end of file

• A FORTRAN 66 program that demonstrates the CLEANUP$ condition,
which is raised while processing a nonlocal GOT.

Two Protecting Programs in CPL

Below are two programs, each of which protects a FORTRAN program called
SQRT against being interrupted by the BREAK (or CONTROL-P) key. They
demonstrate both a simple and a more sophisticated means by which
programs can avoid having to use the condition mechanism subroutines.
When the language in which a program is written does not support
on-units, or when condition handling is added as an afterthought, CPL
can sometimes be used to handle conditions.

/* PROTECT.CPL
/* Trap the BREAK key with an on-unit in CPL.
/*
&0N QUIT$ &ROUTINE BREAK.JIANDLER
&DATA SEG SQRT
4TTY

SEND
&RETURN

First Edition 7-10

CONDITION MECHANISM

^ &ROUTINE BREAK_HANDLER
TYPE
TYPE
TYPE You have typed the break key.
&SET_VAR EXIT_FLAG := -

[QUERY 'Do you wish to exit from the program']
&IF A %EXIT_FLAG% -
&THEN ~
TYPE Continuing program.

SELSE ~
&D0
TYPE Exiting program.
&STOP

&END
&RETURN

The program PROTECT2.CPL can better handle your typing BREAK several
times in a row.

/* PR0TECT2.CPL
/* Trap the BREAK key with an on-unit in CPL.
/* Do not allow multiple breaks.
/*
&0N QUIT$ &ROUTINE BREAK_HANDLER
&DATA SEG SQRT
&TTY

SEND
&RETURN

&ROUTINE BREAK_HANDLER
&0N QUIT$ &ROUTINE DUMMY_HANDLER
TYPE
TYPE
TYPE You have typed the break key.
&LABEL ALTERNATE_ENTRY
&SET_VAR EXIT_FLAG := -

[QUERY 'Do you wish to exit from the program']
&IF A %EXIT_FLAG% ~
&THEN ~
TYPE Continuing program.

&ELSE ~
&D0
TYPE Exiting program.
&STOP

SEND
&RETURN

&ROUTINE DUMMY_HANDLER
TYPE
TYPE Please answer the question!
&GOTO ALTERNATE_ENTRY
&RETURN

7-11 First Edition

SUBROUTINES, VOLUME III

Here is the FORTRAN source for the SQRT program invoked by PROTECT and
PROTECT2.

C SQRT.FTN
C
C This is a small interactive FORTRAN program that is to be
C protected from BREAKS (the QUIT$ condition) by an enveloping
C program written in CPL.
C

REAL INVAL, OUTVAL
C
1000 WRITE (1, 1005)
1005 FORMAT (/, 'WHAT IS THE NUMBER:')

READ (1, 1010) INVAL
1010 FORMAT (F5.0)

IF (INVAL .EQ. 0.) GOTO 9999
OUTVAL = SQRT (INVAL)
WRITE (1, 1020) INVAL, OUTVAL

1020 FORMAT ('THE SQUARE ROOT OF ', F5.0, ' IS ', F5.2)
GOTO 1000

C
9999 WRITE (1, 9000)
9000 FORMAT (/ , 'END OF PROGRAM')

CALL EXIT
END

The REENTER$ Condition From F77

C REENTER.F77
C
C This program creates an on-unife-fbr the REENTER$ condition.
C If the user breaks out of the program during its operation, and
C then reenters it through the PRIMOS REN command, the on-unit
C is invoked to start the program from the proper place.
C

EXTERNAL RENHDLR
EXTERNAL MKON$P
EXTERNAL MKLB$F

C
CHARACTER*8 CONDITION.JJAME/' REENTER$' /
CHARACTER*80 CHAR_STRING
REAL*8 REENTRY_POINT
INTEGER*2 INDEX, CONDITION_LENGTH/8/

C
COMMON /REENTRY/ REENTRY_POINT

C
C The "$1000" on the next line refers to statement 1000

CALL MKLB$F ($1000, REENTRY_POINT)
CALL MKON$P (CONDITION_NAME, CONDITION_LENGTH, RENHDLR)

First Edition 7-12

CONDITION MECHANISM

1000
1010

1020
C

1030
9999

C
C

C

C

1010

WRITE (1, 1010)
FORMAT ('Enter a character string:')
READ (1, 1020) CHAR_STRING
FORMAT (A80)

DO 9999 INDEX = 1, 500
WRITE (1, 1030) CHAR_STRING
FORMAT (A80)
CONTINUE
END

SUBROUTINE RENHDLR (CP)

INTEGER*4 CP

EXTERNAL PL1$NL
COMMON /REENTRY/ REENTRY_J>OINT
WRITE (1, 1010)
FORMAT ('** Reentering subsystem **')
CALL PL1$NL (REENTRY_POINT)
RETURN
END

Handling QUIT$ from FTN

C
C
C
C
C
C
C
C

PROSQRT.FTN

This program creates an on-unit for the BREAK key. The on-unit
prevents BREAK from exiting the program and instructs the user
how to exit.

In FTN the on-unit must be declared as an external routine.

EXTERNAL BKHNDL

REAL INVAL, OUTVAL
REAL*8 BRKRTN

COMMON /BRKLBL/ BRKRTN
C

CALL MKON$F ('QUIT$', 5, BKHNDL)
C The "$1000" in the next line refers to statement 1000

CALL MKLB$F ($1000, BRKRTN)
1000 WRITE (1, 1005)
1005 FORMAT (/, 'WHAT IS THE NUMBER:')

READ (1, 1010) INVAL
1010 FORMAT (F5.0)

IF (INVAL .EQ. 0.) GOTO 9999
OUTVAL = SQRT (INVAL)
WRITE (1, 1020) INVAL, OUTVAL

1020 FORMAT ('THE SQUARE ROOT OF ', F5.0, ' IS ', F5.2)

7-13 First Edition

SUBROUTINES, VOLUME III

GOTO 1000
C
9999 WRITE (1, 9000)
9000 FORMAT (/ , 'END OF PROGRAM')

CALL EXIT
END

C
C This subroutine handles the QUIT$ condition when it is raised.
C
C Ordinarily, it would be incorrect to use FORTRAN I/O from inside
C this on-unit, because FTN is not reentrant, and we would be
C disturbing the keyboard I/O that was in progress when QUIT$
C was raised. In this case, however, we use a nonlocal GOTO to
C return to statement 1000 of the main program, and never return
C to the I/O that was in progress.
C

SUBROUTINE BKHNDL (CP)

INTEGER*4 CP
REAL*8 BRKRTN
COMMON /BRKLBL/ BRKRTN
WRITE (1, 1000)

1000 FORMAT ('YOU MUST TYPE ZERO TO EXIT THIS PROGRAM!')
CALL PL1$NL (BRKRTN)
RETURN
END

Handling End of File From PL/I

/* EOF.PL1 */

/* This program creates on-units for both the ENDFILE and QUIT$
conditions. The on-unit for the end-of-file condition is
set up by PL/I's ON statement, while the on-unit for quits
is set up by calling MKON$P. The on-unit for quits closes
all files and exits the program.

*/
EXAMPLE: PROCEDURE OPTIONS(MAIN) ;

DCL EMPLOYEE_NO FIXED DECIMAL(5);
DCL (GROSS^PAY, HOURLY_RATE) FIXED DECIMAL (5,2) ;
DCL HOURS_WORKED FIXED DECIMAL(2);
DCL FIXED DECIMAL(5,2) ;
DCL NUMBER_OF_EMPLOYEES FIXED BIN(15);
DCL (REPORT, DATAFILE) FILE;
DCL CONDITION_NAME CHAR(5) STATIC INITIAL('QUIT$');
DCL MKON$P ENTRY (CHAR(5) , FIXED BIN, ENTRY);

BREAK-HANDLER: PROC(CP) ;
DCL CP PTR;
PUT SKIP LIST ('** Aborting program * * ') ;

First Edition 7-14

CONDITION MECHANISM

f^ CLOSE FILE (DATAFILE) ;
CLOSE FILE (REPORT) ;
GOTO ABORT_J?ROGRAM;

END;

ON ENDFILE (DATAFILE)
BEGIN;

PUT SKIP LIST ('** End of File Encountered * * ') ;
GOTO END_FILE;

END;

CALL MKON$P (CONDITION_NAME, 5, BREAK_HANDLER);
OPEN FILE (DATAFILE) TITLE ('DATAFILE') STREAM INPUT;
OPEN FILE (REPORT) TITLE ('REPORT') STREAM OUTPUT;
NUMBER_OF_EMPLOYEES = 0;

DO WHILE Cl'B) ;
GET FILE (DATAFILE)

LIST (EMPLOYEE_NO, HOURLY_RATE, HOURS_WORKED);
NUMBER_OF_EMPLOYEES = NUMBER_OF_EMPLOYEES + 1;
GROSS_PAY = HOURS_WORKED * HOURLY_RATE;
PUT FILE (REPORT)
LIST (EMPLOYEE_JJO, HOURLY_RATE,

HOURS_WORKED, GROSS_PAY) ;
PUT FILE(REPORT)SKIP;

END;

END_FILE:
PUT FILE(REPORT) LIST(NUMBER_OF_EMPLOYEES)SKIP(3);

ABORT_PROGRAM:
END EXAMPLE;

A CLEANUPS On-unit From FTN

The following programs demonstrate the QUIT? and CLEANUP? on-units.
When the BREAK key is typed, a nonlocal GOTO is executed, which causes
CLEANUP? to be raised in the routine SUBA.

C CLEANUP.FTN
C
C This program creates on-units for the QUIT? and CLEANUP?
C conditions.
C

EXTERNAL BKHNDL
C

REAL*8 BRKRTN
COMMON /BRKLBL/ BRKRTN

C
CALL MKON?F ('QUIT?', 5, BKHNDL)
CALL MKLB?F (S1000, BRKRTN)

^ 1000 WRITE (1,1010)

7-15 First Edition

SUBROUTINES, VOLUME III

1010 FORMAT (/, 'In the routine: MAIN')
CALL SUBA
CALL EXIT
END

C
SUBROUTINE SUBA
EXTERNAL ACLUP
WRITE (1, 1000)

1000 FORMAT ('In the routine: SUBA')
CALL MKON$F ('CLEANUP $', 8, ACLUP)
CALL SUBB
RETURN
END

C
SUBROUTINE SUBB
INTEGER DUMMY
WRITE (1,1000)

10 00 FORMAT ('In the routine: SUBB')
WRITE (1, 1010)

1010 FORMAT ('Type RETURN to exit, BREAK to test on-units')
READ (1, 1020) DUMMY

1020 FORMAT (A2)
RETURN
END

C HDLRS.FTN
C
C On-units for the module CLEANUP.FTN
C
C The routine ACLUP is invoked when a nonlocal GOTO is
C aborting SUBA.
C

SUBROUTINE ACLUP (CP)
INTEGER*4 CP, I
WRITE (1, 1000)

1000 FORMAT ('In the cleanup routine: ACLUP')
DO 1010 1 = 1 , 50000

1010 CONTINUE
RETURN
END

C
C The routine BKHNDL is invoked when the QUIT$ condition is
C raised by the user hitting the BREAK key.
C

SUBROUTINE BKHNDL (CP)
INTEGER*4 CP
REAL*8 BRKRTN
COMMON /BRKLBL/ BRKRTN
WRITE (1, 1000)

1000 FORMAT ('In the routine: BKHNDL')
CALL PL1$NL (BRKRTN)
RETURN
END

First Edition 7-16

CONDITION MECHANISM

CRAWLOUT MECHANISM

An event known as a crawlout occurs whenever the condition mechanism
reaches the end of an inner-ring stack (a ring other than ring 3)
without finding a selectable on-unit for the condition that has been
raised. (Protection rings are described in the System Architecture
Reference Guide.) A crawlout can occur even when the inner ring has an
on-unit for the condition. This occurs if that on-unit signals another
condition, or calls CNSIG$ and returns, causing a resumption of the
stack scan. The scan for on-units resumes on the stack of the ring
that invoked the inner ring. The outer ring receives a copy of the
machine state at the time the condition was raised.

7-17 First Edition

SUBROUTINES, VOLUME III

CONDITION MECHANISM ROUTINES

This section describes the following subroutines:

Routine Function

CNSIG$ Continues scan for on-units.

MKLB$F Converts FORTRAN statement label to PL/I format.

MKON$F Creates an on-unit (for FTN users).

MKON$P Creates an on-unit (for any language except FTN).

MKONU$ Creates an on-unit (for PMA and PL/I users).

PL1$NL Performs a nonlocal GOTO.

RVON$F Reverts an on-unit (for FTN users).

RVONU$ Reverts an on-unit (for any language except FTN).

SGNL$F Signals a condition (for FTN users).

SIGNL$ Signals a condition (for any language except FTN)

First Edition 7-18

CONDITION MECHANISM

CNSIG$

Purpose

CNSIG$ is called when an on-unit has been unable to completely handle
the condition. CNSIG$ instructs the condition mechanism to continue
scanning for more on-units for the specific condition that was raised
after the calling on-unit returns. The continue-to-signal switch/
cfh.cflags.continue_sw, is set in the most recent condition frame.

Usage

DCL CNSIG$ ENTRY (FIXED BIN);

CALL CNSIG$ (code);

Parameters

code

OUTPUT. Standard error code. Nonzero only if there was no
condition frame found in the stack.

Discussion

The continue-to-signal switch is automatically set whenever an ANY$
on-unit is invoked. Therefore, an ANY$ on-unit need not issue a call
to CNSIG$ to continue to signal.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-19 First Edition

SUBROUTINES, VOLUME I I I

MKLB$F

Purpose

MKLB$F converts a FORTRAN statement label or an integer variable with a
statement label value into a PL/I-compatible label value. This label
value can then be used with a call to the subroutine PL1$NL to perform
a full-function nonlocal GOTO in a FORTRAN program.

Usage

The FORTRAN usage is:

INTEGER*2 stmt
REAL*8 label

CALL MKLB$F (stmt, label)

Parameters

stmt

INPUT. Variable to which a FORTRAN statement number has been
assigned by an ASSIGN statement, or a statement number constant in
the format $xxxxx.

label

OUTPUT. Contains PL/I-compatible label value for stmt returned by
call to MKLB$F.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 7-20

CONDITION MECHANISM

MKON$F

Purpose

MKON$F creates an on-unit for a specific condition and is intended for
the FTN user.

Usage

The FORTRAN usage is:

EXTERNAL unit
INTEGER*2 cname(16)/ cname1

CALL MKON$F (cname/ cname_len/ unit)

Parameters

cname

INPUT. Array containing name of condition for which on-unit is to
be created.

cname_len

INPUT. Length (in characters) of cname.

unit

INPUT. The external subroutine that is to be the on-unit handler.
The subroutine must take an argument, since the PRIMOS condition
mechanism calls the subroutine as follows:

INTEGER*4 CP
CALL UNIT (CP)

where CP is a pointer to the condition frame header (CFH) that
describes the condition.

7-21 First Edition

SUBROUTINES, VOLUME III MKON$F

Discussion

FORTRAN cannot directly access the CFH through CP. A subroutine
written in PL/I or PMA could pass the desired CFH information, or the
MOVEW$ procedure could be used to move the data to an accessible
location.

cname and cname_len can be overwritten by the caller once MKON$F has
returned, since they are copied into a stack frame extension.

MKON$F should not
requires MKON$P.

be

Caution

called from FORTRAN 77. FORTRAN 77

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

First Edition 7-22

CONDITION MECHANISM

MKON$P

Purpose

MKON$P creates an on-unit for a given condition. It can be used in
programs written in any language except FTN.

Usage

DCL MKON$P ENTRY (CHAR(*), FIXED BIN, ENTRY);

CALL MKON$P (condname, namelen, handler);

Parameters

condname

INPUT. The name of the condition for which an on-unit is desired.
The name should not contain any blanks.

namelen

INPUT. The length of condname, in characters.

handler

INPUT. The internal or external entry (subroutine) value that is
to be invoked as the on-unit. If the value is an internal
procedure, it must be immediately contained in the block calling
MKON$P. The subroutine must take at least one argument.

7-23 First Edition

SUBROUTINES, VOLUME III MKON$P

The F77 usage is:

EXTERNAL handler
INTEGER*2 namelen
CHARACTER*namelen name/'condname'/

CALL MKON$P(name, namelen, handler)

condname

INPUT. The name of the condition for which an on-unit is desired.
The name should not contain any blanks (input).

name

INPUT. A variable to hold condname. Its value should not be
altered while the condition is active.

namelen

INPUT. The length of condname, in characters.

handler

INPUT. The name of the external subroutine that is to become the
on-unit. This subroutine must take at least one argument.

Discussion

An on-unit for the specified named condition is created for the calling
block. If the block already has an on-unit for that condition, the
on-unit is redefined.

MKON$P cannot
MKON$F.

be

Caution

called from FORTRAN (FTN). FORTRAN requires

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 7-24

CONDITION MECHANISM

MKONU$

Purpose

MKONU$ creates an on-unit for a specific condition or creates a default
on-unit for the ANY$ condition. MKONU$ can be called only from PMA and
PL/I. PL/I programmers may use either MKON$P or MKONU$.

Usage

DCL MKONU$ ENTRY (CHAR(*)VAR, ENTRY) OPTIONS(SHORTCALL (20));

CALL MKONU$ (condition_name, handler) ;

Parameters

condition_name

INPUT. Name of condition for which on-unit will be created. The
name cannot contain trailing blanks. Any previous on-unit for this
condition within the activation will be overwritten.

handler

INPUT. Entry value representing on-unit procedure to be invoked
when condition_name is raised and this activation is reached in the
stack scan. Since MKONU$ does not save the display pointer
associated with on-unit entry, the entry value must be external or
declared in the block calling MKONU$. (An entry constant declared
in the block containing the call to MKONU$ satisfies these
restrictions.) The handler must take at least one argument.

Discussion

The stack frame of the caller is lengthened, if necessary, to add the
descriptor block for the new on-unit.

The caller must guarantee that the storage occupied by condition_name
will not be freed until the caller returns or until the activation is
aborted by a nonlocal GOTO. The suggested way of making this guarantee
is to declare a static character varying field containing the name of
the condition, and to use that field in the call.

From PL/I the declaration OPTIONS (SHORTCALL(20)) is required for
MKONU$. The PL/I SHORTCALL option provides additional space needed for
the calling procedure's temporary storage. OPTIONS(SHORTCALL) provides

7-25 First Edition

SUBROUTINES, VOLUME III MKONU$

8 halfwords of stack by default. MKONU$ requires 28 halfwords of
stack, and thus requires an extra 20 halfwords. If the stack size is
insufficient, the return from MKONU$ causes unpredictable results.

OPTIONS(SHORTCALL) causes the PMA instruction JSXB to be used instead
of the PCL instruction. PCL generates a new stack. JSXB does not
generate a new stack, and is faster, but requires that there be
sufficient space on the caller's stack. Also, MKONU$ can only be
called from code executing in V-mode.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

First Edition 7-2 6

CONDITION MECHANISM

PL1$NL

Purpose

PL1$NL performs a full-function nonlocal GOTO to the statement
identified in the call. Label values created by MKLB$F are suitable
arguments for PL1$NL.

Usage

The FORTRAN usage is:

REAL*8 label

CALL PL1$NL (label)

Parameters

label

INPUT. PL/I-compatible label value.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

7-27 First Edition

SUBROUTINES, VOLUME I I I

RVON$F

Purpose

RVON$P disables (reverts) an on-unit for a specific condition. Its
effect is identical to RVONU$ but is designed for the FTN user.

Usage

The FORTRAN usage is:

INTEGER*2 cname(16), enamel

CALL RVON$F (cname, enamel)

Parameters

cname

INPUT. Name of condition for which the on-unit is to be disabled,

enamel ^

INPUT. Length (in characters) of cname.

Discussion

There is no effect if an on-unit does not exist for the named
condition, or if the on-unit has already been disabled.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 7-28

CONDITION MECHANISM

RVONU$

Purpose

RVONU$ disables (reverts) an on-unit for a specific condition for any
language except FTN. Once disabled, the on-unit is ignored during
stack frame scanning. The on-unit can be reinstated only by another
call to MKONU$ or MKON$F. A call to RVONU$ affects only on-units
within its own activation. RVONU$ is used from programs written in
languages that support the CHARACTER VARYING data type.

Usage

DCL RVONU$ ENTRY (CHAR(32) VAR);

CALL RVONU$ (condition_name);

Parameters

condition_name

INPUT. Name of condition for which the on-unit is to be disabled.

Discussion

There is no effect if an on-unit does not exist for the named
condition/ or if the on-unit has already been disabled. A call to
RVONU$ does not affect on-units in any other activation.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-29 First Edition

SUBROUTINES, VOLUME I I I

SGNL$F

Purpose

SGNL$F signals a specific condition and supplies optional auxiliary
information. SGNL$F is the FTN equivalent of SIGNL$. It is used from
programs written in languages that do not support the CHARACTER VARYING
data type.

Usage

The FORTRAN usage is:

INTEGER*2 cname(16), enamel, mslen, infoln, flags
INTEGER*4 msptr, infopt

CALL SGNL$F (cname, enamel, msptr, mslen, infopt, infoln, flags);

Parameters

cname

INPUT. Name of condition to be signalled,

enamel

INPUT. Length (in characters) of cname.

msptr

INPUT. Pointer to location of stack frame header describing
machine state at time the specific condition was detected. The
user does not usually know this information and should pass the
null pointer value (:177600000) .

mslen

INPUT. Length (in halfwords) of stack frame header.

infopt

INPUT. Pointer to location of user-supplied auxiliary information
array. If no information is supplied, the user should pass the
null pointer value (:1777600000).

First Edition 7-30

SGNL$F CONDITION MECHANISM

infoln

INPUT. Length (in • haIfwords) of the structure pointed to by
infopt.

flags

INPUT. Flag array specifying control action:

Bit Meaning

1 If =1/ on-unit may return.

2 If =1, on-unit may return without taking action.

3 If =1, call is result of crawlout. This bit should
never be set by the user.

4 If =1, signal PL/I I/O (PLIO) condition. User program
should not set.

5-16 Must be 0.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-31 First Edition

SUBROUTINES/ VOLUME I I I

SIGNL$

Purpose

SIGNL$ is called to signal a specific condition. The stack is scanned
backwards to find an on-unit for this condition or a default (ANY$)
on-unit. SIGNL$ is used for any language except FTN.

Usage

DCL SIGNL$ ENTRY (CHAR(*) VARr PTR, FIXED BIN, PTR, FIXED BIN,
BIT(16) ALIGNED);

CALL SIGNL$ <condition_jiame, ms_ptr, ms_len, info_ptr,
info_len, action);

Parameters

condition_name

INPUT. Name of condition to be signalled.

ms_ptr

INPUT. Pointer to stack frame header structure defining the
machine state at the time the specific condition was detected. If
ms_ptr is null, a pointer to the condition frame header produced by
this call to SIGNL$ is used.

ms_len

INPUT. Length (in halfwords) of the structure named in ms_ptr. It
is not examined if ms_ptr is null.

info_ptr

INPUT. Pointer to structure containing auxiliary information about
the condition. If no auxiliary information is available, info_ptr
should be null.

info_len

INPUT. Length (in halfwords) of structure in info_ptr. It is not
examined if info_ptr is null.

First Edition 7-32

SIGNL$ CONDITION MECHANISM

action

INPUT. A 16-bit halfword that defines action to be taken:

DCL 1 action,
2 return_ok bit(l),
2 inaction_ok bit(l)/
2 crawlout bit(l),
2 specifier bit(l),
2 mbz bit (12) ;

return_ok If = 'l'b, on-unit is to be allowed to return.

inaction_ok If = 'l'b, on-unit may return without taking
corrective action and still expect "defined"
results. (return_ok must also be 'l'b.)

crawlout If = 'l'b/ call to SIGNL$ is result of a crawlout.
It should never be set by user.

specifier If = 'l'b, it signals PL/I I/O (PLIO) condition.
User program should not use.

mbz Must be zero.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-33 First Edition

SUBROUTINES, VOLUME III

EXIT CONDITION CONTROL ROUTINES

This section describes the following subroutines:

Routine Function

EX$CLR Disables signalling of EXIT$ condition.

EX$RD Returns state of EXIT$ signalling.

EX$SET Enables signalling of EXIT$ condition.

First Edition 7-34

CONDITION MECHANISM

Purpose

This routine disables the signalling of the EXIT$ condition either
after a program's completion or after its termination as the result of
a nonlocal GOTO having been executed.

Usage

DCL EX$CLR ENTRY ();

CALL EX$CLR;

Parameters

There are no parameters.

Discussion

To disable the EXIT$ condition, one call to EX$CLR must be made for
every call to EX$SET, as PRIMOS looks to a single counter that is
either incremented or decremented by calls to these two routines.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-35 First Edition

SUBROUTINES, VOLUME III

EX$RD

Purpose

This routine returns the state of the counter used to control the
conditional signalling of the EXIT$ condition whenever a program EPF
(executable program format) terminates. The routine EX$SET enables the
EXIT$ condition; the routine EX$CLR disables it.

Usage

DCL EX$RD ENTRY (FIXED BIN(15));

CALL EX$RD (transmit_exit_setting);

Parameters

transmit_exit_setting

OUTPUT. The value returned from the counter. A value greater than
zero enables the signalling of the EXITS condition whenever a
program terminates. If the value is zero or negative, the signal
is disabled.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

/3SSX

First Edition 7-36

CONDITION MECHANISM

EX$SET

Purpose

This routine enables the signalling of the EXIT$ condition either after
a program's completion or after its termination as the result of a
nonlocal GOTO having been executed.

Usage

DCL EX$SET ENTRY ();

CALL EX$SET;

Parameters

There are no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-37 First Edition

SUBROUTINES, VOLUME III

DATA STRUCTURE FORMATS ^

The data structures associated with the condition mechanism are
described below. Any user program that uses these structures should
examine the version number in the structure, if one is provided. If
the format of a structure changes, the version number is incremented.
The user program can then take appropriate action if it is presented
with structures of different formats.

The Condition Frame Header (CFH)

The following declaration shows the format of the standard condition
frame header:

del 1 cfh based, /* standard condition frame header */
2 flags,

3 backup_inh bit(1),
3 cond_fr bit(1),
3 cleanup_done bit(1),
3 efh_present bit(l),
3 user_proc bit(l),
3 mbz bit(9),
3 fault_fr bit(2) ,

2 root, ^ ^
3 mbz bit(4), ^
3 seg_no bit(12),

2 ret_pb ptr options (short),
2 ret_sb ptr options (short),
2 ret_lb ptr options (short),
2 ret_keys bit(16) aligned,
2 after_pcl fixed bin,
2 hdr_reserved(8) fixed bin,
2 owner_ptr ptr options (short),
2 cflags,

3 crawlout bit(l),
3 continue_sw bit(l),
3 return_ok bit(l),
3 inaction_ok bit(l),
3 specifier bit(l),
3 mbz bit(11),

2 version fixed bin,
2 cond_name_ptr ptr options (short),
2 ms_ptr ptr options (short),
2 info_ptr ptr options (short),
2 ms_len fixed bin,
2 info_len fixed bin,
2 saved_cleanup_pb ptr options (short);

flags.backup_inh Is always 'O'b in a condition frame. It is used in
regular call frames to control program counter
backup on crawlout from an inner ring. '<s^

First Edition 7-38

CONDITION MECHANISM

flags.cond_fr

flags.cleanup_done

Identifies this frame as
thus is 'l'b.

a condition frame/ and

flags.efh_present

flags.user_proc

flags.mbz

flags.fault_fr

root.mbz

root.seg_no

ret_pb

ret_sb

ret_lb

ret_keys

after_pcl

hdr_reserved

Is 'l'b when this activation has been "cleaned up"
by the procedure unwind, which helps to affect
nonlocal GOTOs. When this flag is set, the value
of cfh.ret_pb no longer describes the return point
of the activation; that information is available
in cfh.saved_cleanup_pb.

Is always 'O'b in a condition frame. It is used in
a regular call frame to indicate that an extended
stack frame header containing on-unit data is
present.

Identifies stack frames belonging to user or
library procedures, and hence is 'O'b in a
condition frame.

Reserved and must be 'O'b.

Is always 'O'b in a condition frame.

Is reserved and must be 'O'b.

Is the hardware-defined stack root segment number,
and indicates which segment contains the stack root
for the stack containing this fault frame.

Points to the next instruction to be executed
following the call to SIGNL$ that caused this
condition to be raised, unless flags•cleanup_done
is 'l'b, in which case cfh.ret_pb points to a
special code sequence used during stack unwinds,
and cfh.saved_cleanup_pb contains the former value
of cfh.ret_pb.

Is the hardware-defined stack base of the caller of
SIGNL$. Thus, this value also points to the
previous stack frame on the stack.

Is the hardware-defined linkage base of the
of SIGNL$.

caller

Is the hardware-defined keys register of the caller
of SIGNL$.

Is the hardware-defined offset of the first
argument pointer following the call to SIGNL$ that
raised this condition.

Is reserved for future expansion of the
hardware-defined PCL/CALF stack frame header, of
which the totality of CFH is a further extension.

7-39 First Edition

SUBROUTINES, VOLUME III

owner_ptr

cflags.crawlout

cflags.continue_sw

Is reserved to point to the entry control block
(ECB) of the procedure that owns this stack frame
(usually SIGNL$).

If 'l'b, this condition occurred in an inner ring
(a ring number lower than the ring in which the
on-unit is executing), but could not be adequately
handled there; otherwise it is 'O'b.

Is used to indicate to the condition mechanism
whether the on-unit that was just invoked (or any
of its dynamic descendants) wishes the backward
scan of the stack for on-units for this condition
to continue upon the on-unit's return. The
subroutine CNSIG$ is used to request that
cflags.continue_sw be turned on; user programs
should not attempt to set it directly. This switch
is cleared before each on-unit is invoked. ANY$
on-units are exceptions; this switch is set before
an ANY$ on-unit is invoked.

cflags.return_ok If 'l'b, indicates the procedure that raised the
condition is willing for control to be returned to
it by means of the on-unit simply returning. If
'O'b, an attempt by an on-unit for this condition
to return causes the special condition
ILLEGAL_ONUNIT_RETURN$ to be signalled. The
on-unit can return regardless of the state of
cfh.cflags.return_ok if cfh.cflags.continue_sw has
previously been set by a call to CNSIG$. This is
because, in this case, the on-unit return does not
cause a return to the procedure that raised the
condition, but instead causes a resumption of the
stack scan.

cflags.inaction_ok

cflags.specifier

If 'l'b, indicates the procedure that raised the
condition has determined that it makes sense for an
on-unit for this condition to return without taking
any corrective action. If 'O'b, the on-unit must
take some corrective action before returning, or
else continued computation may be undefined.
cflags•inaction_ok never is 'l'b unless
cflags.return_ok is 'l'b as well. No user program
should change the state of this or any other member
of cfh.cflags.

If 'l'b, indicates that this condition is a PL/I
I/O (PLIO) condition that requires a specifier
pointer, as well as a condition name to completely
identify it. This specifier is usually a pointer
to a PLIO file control block. The specifier must
be the first member of the information structure.

First Edition 7-40

CONDITION MECHANISM

cflags.mbz

version

cond__name_pt r

ms_ptr

info_ptr

ms_len

info__len

saved_cleanup_pb

Is reserved for future expansion and must be 'O'b.

Identifies the version number (and hence the
format) of this structure, and currently is always
1.

Is a pointer to the name (char(32) varying) of the
condition that caused the on-unit to be invoked.

Is a pointer to a structure that defines the state
of the CPU at the time the condition occurred. In
the case of hardware faults, ms_ptr points to a
standard fault frame header (FFH). In the case of
software-initiated conditions, ms_ptr points to a
CFH. The two cases can be distinguished by the
value of ms_ptr -> cfh.flags.fault_fr. If 'O'b,
the software case obtains; otherwise, the hardware
case obtains.

Is a pointer to an arbitrary structure containing
auxiliary information about the condition. If
null, no information is available. This pointer is
copied directly from the corresponding argument to
SIGNL$. If cflags.specifier is 'l'b, the format of
this structure is partially constrained as
described above.

Is the length (in halfwords) of the structure
pointed to by ms_ptr.

Is the length (in halfwords) of the structure
pointed to by info_ptr.

Is valid only if flags.cleanup_done is 'l'b, and if
valid is the former value of cfh.ret_pb (which has
been overwritten by the nonlocal GOTO processor).

Note

When writing procedures to interpret the data contained in a
CFH structure, be aware that, in the case of a crawlout,
cfh.ms_ptr describes the machine state at the time the
condition was generated. The stack history pertaining to that
machine state has been lost as a result of the crawlout.

The machine state extant at the time the inner ring was entered
is available, and is pointed to by cfh.ret_sb. This machine

7-41 First Edition

SUBROUTINES, VOLUME III

state will be a CFH or an FFH according to whether the inner
ring was entered via a procedure call (CFH) or a fault (FFH).
The value of cfh.ret_sb -> cfh.flags.fault_fr can be used to
distinguish these cases.

In the case in which a crawlout has not occurred, cfh.ms_ptr
points to the proper machine state, and no assumptions can be
made concerning cfh.ret_sb.

For more information on crawlout, see CRAWLOUT MECHANISM
earlier in this chapter.

The Extended Stack Frame Header (EFH)

Any procedure (or begin block) that is to create one or more on-units
must reserve space in its stack frame header for an extension that
contains descriptive information about those on-units. This space is
allocated automatically by the Prime high-level language compilers.
PMA programs require explicit space allocation. The format of the
stack frame header (with extension) is:

del 1 sfh based, /* stack frame header */
2 flags,
3 backup_inh bit(l),
3 cond_fr bit(l),
3 cleanup_done bit(l),
3 efh_present bit(l),
3 user_proc bit(l),
3 stk_cbits bit(l),
3 lib_proc bit(l),
3 ecb_cbits bit(l),
3 mbz bit (6),
3 fault_fr bit(2),

2 root,
3 mbz bit(4),
3 seg_no bit(12),

2 ret_pb ptr options (short),
2 ret_sb ptr options (short),
2 ret_lb ptr options (short),
2 ret_keys bit(16) aligned,
2 after_pcl fixed bin,
2 hdr_reserved(8) fixed bin,
2 owner_ptr ptr options (short),
2 tempsc(8) fixed bin,
2 onunit_ptr ptr options (short),
2 cleanup_onunit_ptr ptr options (short),
2 next_efh ptr options (short),
2 reserved(6) fixed bin,
2 cond_bits bit(16) aligned;

First Edition 7-42

CONDITION MECHANISM

del 1 ecb based, /* Entry Control Block */
2 pb ptr options (short),
2 frame_size fixed bin(15),
2 stack__seg fixed bin (12),
2 arg_offset fixed bin(15),
2 num_args fixed bin(15),
2 lb ptr options (short),
2 concUbits bit (16) aligned,
2 reserved(6) fixed bin(15) ;

flags.backup_inh

flags.cond_fr

Is examined only if this stack frame is the
crawlout frame on an inner-ring stack, and a
crawlout is taking place. If 'l'b, it indicates
that sfh.ret_pb is to be copied to the outer ring
as-is, so that the operation being aborted by the
crawlout is not retried. If 'O'b, sfh.ret_pb is
set to point at the PCL instruction so that the
inner-ring call can be retried.

Is 'O'b unless the frame is a condition frame (and
is hence described by the structure CFH).

flags.cleanup_done

flags.efh_present

flags. user_j?roc

flags.stk_cbits

flags.lib_proc

If 'l'b, the nonlocal GOTO processor has cleaned up
this frame by invoking its CLEANUP$ on-unit, if
any, and resetting its sfh.ret_pb to point to a
special code sequence to accomplish the unwinding
of this stack frame. When 'l'b, the former value
of sfh.ret_pb can be found in sfh.tempsc(7;8)
provided sfh.flags.efh_present is set.

If 'l'b, the extension portion of this frame header
has been validly initialized. This extension
portion is marked EFH below. In the present
implementation, this implies that at least one call
to MKONU$ has been made, since MKONU$ is
responsible for performing the initialization. If
'O'b, members of this structure are not valid and
can be used by the procedure for automatic storage.

If 'l'b, this stack frame belongs to a nonsupport
procedure; otherwise 'O'b. If flags•user_proc is
'l'b, sfh.owner_ptr is guaranteed to be valid and
to point to an entry control block (ECB) that is
followed by the name of the entrypoint.

If 'l'b, then cond_bits exists within the stack
frame header and should be used to determine
whether to signal an exception condition. If 'O'b,
then flags.ecb_cbits is checked.

If 'l'b, then the procedure is a library routine.

7-43 First Edition

SUBROUTINES, VOLUME III

flags.ecb_cbits If 'l'b, then ecb.cond_bits exists and should be
used to determine whether to signal an exception
condition. If both flags.stk_cbits and
flags .ecb_cbits are 'O'b, then flags•lib_proc is
examined.

Note

If all three of the previous flag bits are
reset ('O'b), then PL/I default condition
handling is used.

flags.mbz

flags.fault_fr

root.mbz

root.seg_no

ret_pb

ret_sb

ret_lb

ret_keys

after_pcl

hdr_reserved
(EFH)

owner_ptr
(EFH)

Is reserved and is 'O'b.

If 'O'b, this frame was created by a regular
procedure call; if '10'b, this frame is a fault
frame (FFH) with valid saved registers; if 'Ol'b,
this frame is a fault frame (FFH) in which the
registers have not yet been saved.

Is reserved and must be 'O'b.

Is the hardware-defined segment number of the stack
root of the stack of which this frame is a member.

Points to the next instruction to be executed upon
return from this procedure.

Contains the stack base belonging to the caller of
this procedure, and hence also points to the
immediate predecessor of this stack frame.

Contains the linkage base belonging to the caller
of this procedure.

Contains the hardware-defined keys register
belonging to the caller of this procedure.

Is a value pointing two halfwords beyond the
procedure call (PCL) instruction that invoked this
procedure.

Is reserved for future expansion of the
hardware-defined PCL stack frame header.

Points to the entry control block (ECB) of the
procedure that owns this stack frame. This member
must be initialized by the called procedure itself;
the PCL instruction does not do it.

First Edition 7-44

CONDITION MECHANISM

tempsc
(EFH)

Is a fixed-position block of eight halfwords to be
used as temporary storage by procedures called by
this procedure that have a shortcall invocation
sequence and hence have no stack frame of their
own.

onunit_ptr
(EFH)

Points to the start of a chain of on-unit
descriptor blocks for this activation. If
onunit_ptr is null, this activation has no on-unit
blocks, except possibly for the condition CLEANUP$
as described below.

cleanup_onunit_ptr
(EFH)

If nonnull, this activation has an on-unit for
the special condition CLEANUP$, and
cleanup_onunit_pt r points to the entry control
block (ECB) for that on-unit procedure. It does
not point to an on-unit descriptor block.

next_efh
(EFH)

Points to the first on a chain of additional
stack frame header blocks, so that these do not
have to be allocated at the beginning of the stack
frame. Presently, next_efh is always null.

reserved Is reserved.

cond_bits PL/I condition enable bits.

The entry control block (ECB) is described in the System Architecture
Reference Guide.

The Standard Fault Frame Header (FFH)

Whenever a hardware fault occurs, the Fault Interceptor Module (FIM) is
expected to push a stack frame with the standard format shown below.
The standard fault frame header structure is:

del ffh based,
2 flags,
3 backup_inh bit(l),
3 cond_fr bit(l),
3 cleanup_done bit(l),
3 efh_present bit(l),
3 user_proc bit(l),
3 mbz bit (9),
3 fault_fr bit(2),

/* standard fault frame header */

7-45 First Edition

SUBROUTINES, VOLUME III

2 root,
3 mbz bit (4),
3 seg_no bit(12),

2 ret_pb ptr options (short),
2 ret_sb ptr options (short),
2 ret_lb ptr options (short),
2 ret_keys bit(16) aligned,
2 fault_type fixed bin,
2 fault_code fixed bin,
2 fault_addr ptr options (short),
2 hdr_reserved(7) fixed bin,
2 regs,
3 save_mask bit(16) aligned,
3 fac_l(2) fixed bin(31),
3 fac_0(2) fixed bin (31),
3 genr(0:7) fixed bin(31),
3 xb_reg ptr options (short),

2 saved_cleanup_pb ptr options (short),
2 pad fixed bin;

flags.backup_inh

flags.cond_fr

flags.cleanup_done

flags.efh_present

flags.user_proc

flags.mbz

flags.fault_fr

root.mbz

root.seg_no

Is ignored by the condition mechanism for fault
frames.

Is 'O'b in a fault frame.

Is set to 'l'b by the procedure that unwinds the
stack when it has cleaned up this fault frame. The
old value of f fh.ret_pb has been placed in
ffh.saved_cleanup_pb, provided flags•fault—fr is
'10'b.

Is 'O'b in a fault frame, implying that FIMs cannot
make on-units.

Is always 'O'b in a fault frame.

Is reserved and is 'O'b.

Is '10'b if this frame is indeed a standard format
FFH and the registers have been validly saved in
ffh.regs; else is 'Ol'b.

Is reserved and is always 'O'b.

Is the hardware-defined stack root segment number.

First Edition 7-46

CONDITION MECHANISM

ret_pb Points to the next instruction to be executed
following a return from the fault. This is
frequently also the instruction that caused the
fault (the case for those faults defined by the
System Architecture Reference Guide as backing up
the program counter). If flags.cleanup_done is
'l'b/ ret_pb points to a special unwind code
sequence, and its former value has been saved, if
possible, in ffh.saved_cleanup_pb.

ret_sb Contains the value of the SB register at the time
of the fault, and hence usually points to the
predecessor of this stack frame.

ret_lb Contains the value of the LB register at
of the fault.

the time

ret_keys Contains the value of the KEYS register at the time
of the fault. This can be used to determine in
what addressing mode the fault was taken.

fault_type

v

Is set by each FIM to the offset in the fault table
corresponding to the fault that occurred (for
example, a process fault results in a fault_type of
'04'b3). This datum cannot be guaranteed valid, as
it is not set indivisibly with the hardware-defined
header information. Since FIMs usually set
fault_type just after saving the registers, it is
very unlikely for fault_type to be invalid.

fault_code Is the hardware-defined fault code produced by
fault that was taken.

the

fault_addr Is the hardware-defined fault address
the fault that was taken.

produced by

hdr_reserved Is reserved for future expansion
hardware-defined stack header.

of the

regs Is valid if flags.fault_fr is '10'b, and if valid,
contains the saved machine registers at the time of
the fault in the format produced by the RSAV
instruction. For more information see the
Instruction Sets Guide.

s aved_cleanup_pb Is valid only if flags.fault_fr is '10'b and
flags•cleanup_done is 'l'b, and if valid, contains
the value that was in ret_pb before the latter was
overwritten by the procedure that unwinds the
stack.

pad Exists only to make the size of this
even number of words.

structure an

7-47 First Edition

SUBROUTINES, VOLUME III

The On-unit Descriptor Block

Each on-unit created by an activation is described to the condition
mechanism by a descriptor block (except for the special condition
CLEANUP$, which has no descriptor). These descriptor blocks are
threaded together in a simple linked list, the head of which is pointed
to by sfh.onunit_ptr. The format of an on-unit descriptor is:

del 1 onub based, /* standard onunit block */
2 ecb_ptr ptr options (short),
2 next_ptr ptr options (short),
2 flags,
3 not_reverted bit(l),
3 is_proc bit(l),
3 specify bit(1),
3 snap bit(1),
3 mbz bit(12),

2 pad fixed bin,
2 cond_name_ptr ptr options (short),
2 specifier ptr options (short);

ecb_ptr Points to the entry control block (ECB) that
represents the procedure or begin block to be
invoked when this on-unit is selected for
invocation.

next_ptr Points to the next on-unit descriptor on the chain
for this activation. A null pointer indicates the
end of the list.

flags.not_reverted Is 'l'b if this on-unit is still valid and has not
reverted; is 'O'b if the on-unit has been reverted
and is to be ignored by the condition-raising
mechanism.

flags.is_proc Is 'l'b if this on-unit was made via a call to the
primitive MKONU$; is 'O'b if it was made via the
PL/I ON statement.

flags.specify Is 'O'b if the condition name fully identifies
which condition this on-unit block is to handle.
Is 'l'b if onub.specifier is a further qualifier
for the condition.

flags.snap Is 'l'b if the snap option was specified in the
PL/I ON statement that created this on-unit; 'O'b
otherwise.

flags.mbz Is reserved and must be 'O'b.

pad Is reserved and must be 0.

First Edition 7-48

CONDITION MECHANISM

cond_name_ptr Is a pointer to a varying character string
containing the condition name for which this
on-unit is a handler. This name may be an
incomplete specification if onub.flags.specify is
'l'b.

specifier Is valid only if onub.flags•specify is 'l'b, and if
valid, qualifies the condition name that is pointed
to by onub.cond_name_ptr. The primary use of
onub.specifier is for PL/I I/O conditions, in which
the specification of the condition requires both a
name and a file descriptor pointer.

7-49 First Edition

8
Semaphores and Timers

REALTIME AND INTERUSER COMMUNICATION FACILITIES

PRIMOS supports user applications that have realtime requirements or
that need to synchronize execution with other user programs.

The subroutine descriptions are divided into three parts. The first
part describes routines that manipulate semaphores. The second part
describes a routine used to signal the completion of some timed
interval. The third part describes routines that cause a specific
delay before resumption of processing.

SEMAPHORES

A set of subroutines provides access to Prime's semaphore primitives
(wait and notify) and to internal timing facilities. The semaphore
facility provides a means to coordinate multiple processes, providing
that the processes involved all use the facility in the same way.

On time-sharing systems where more than one process can be active at
the same time, there is often a need to coordinate the execution of
multiple processes with one another. Such coordination is required
when two or more processes cooperate to solve a common problem, or when
multiple processes must use a common, limited resource.

8-1 First Edition

SUBROUTINES, VOLUME III

When multiple processes are working together as part of a larger system
or to solve a common problem, it sometimes happens that one or more of
the processes encounter a situation in which they cannot do any further
work until some event, external to the process, happens. An example of
this is a spooler that picks up print requests from a queue. When
there are requests in the queue, the spooler services them. However,
when the queue becomes empty, it can no longer do useful work and must
wait for another process to give it something to do.

There are many resources on a time-sharing system that must be shared
by all of the running processes. Included in the list are such things
as devices that can have only one user at a time (such as a paper-tape
punch), a section of code that performs a single operation, or files
that are updated and read simultaneously by several programs.

The semaphore facility consists of some blocks of memory, which are
called semaphores, and a set of software routines or hardware
instructions that perform various operations on these blocks. There is
no real connection between a semaphore and the event or resource with
which it is associated. The use to which a semaphore is put is
determined solely by the application programs that use it, All of the
cooperating programs must agree on the meaning (or use) of' a semaphore
and use it the same way.

How a Semaphore Works

A semaphore consists of two parts: a counter and a queue (see Figure
8-1).

Counter

Queue

-1

Resource Semaphore at Start
Figure 8-1

First Edition 8-2

SEMAPHORES AND TIMERS

When a process wishes to wait for an event to happen or a resource to
become available, it issues a wait call for the semaphore associated
with that event or resource. The wait call will increment the counter
for that semaphore and test its value. If the counter is less than or
equal to 0, the process is allowed to proceed immediately and is not
placed on the semaphore's queue (see Figure 8-2).

Counter

Queue

'/^*

Resource Semaphore After Call by One Process
(Process 1 Is Using the Resource, No Processes Waiting)

Figure 8-2

If, however, the counter is greater than or equal to 1 after being
incremented, then the process is placed on the wait queue for the
semaphore (see Figure 8-3) . The process will not run again until it
leaves this queue. Processes are placed on the queue in priority order
with higher priority processes being placed closer to the head of the
queue. Within a given priority, the processes are treated as a real
queue — first in, first out.

8-3 First Edition

SUBROUTINES, VOLUME I I I

Counter

Queue Process 2

Resource Semaphore After Call by Second Process
(First Process Is Using the Resource)

Figure 8-3

When a process wishes to report that an awaited event has occurred, or
that a resource has become available for use by other processes, it
will call a notify routine for the semaphore associated with that event
or resource (see Figure 8-4). The notify routine will first test the
value of the counter for that semaphore. If the counter is greater
than 0 (indicating that one or more processes are in the semaphore's
queue), then the routine will remove one process from the top of the
queue, thereby allowing that process to run again. Whether a process
was dequeued or not, the routine will then decrement the counter by
one.

First Edition 8-4

SEMAPHORES AND TIMERS

Counter

Queue

Resource Semaphore After Notify by One Process
(Process 2 Is Now Using the Resource)

Figure 8-4

Normally, a semaphore's counter is preset to some value before the
semaphore is used by any process. The value to which it is set depends
on the nature of the software that will use the semaphore and on the
purpose of the semaphore. Typical initial values are -1 and 0. A
value of -1 allows the first process that waits on the semaphore to
proceed immediately without being queued, as shown in Figures 8-1
through 8-4. This effect is desirable if the semaphore is used to
coordinate the use of a shared resource. The resource is considered
available until a process indicates its intent to use it. A value of 0
is appropriate for wait situations in which a process must wait until
some condition exists or until an event occurs. The process that must
wait for an event to happen does a wait operation on the semaphore, and
is immediately put on the queue since the counter becomes greater than
0. When another process determines that the awaited event has
occurred, it will notify the same semaphore, thus allowing the queued
process to run.

When a process opens a named semaphore, and that process is the first
to open that semaphore, then the SEM$OP routine will preset the
semaphore's counter to a value of 0. If an initial value of -1 is
required, then the process should notify the semaphore once after
opening it. For named semaphores, SEM$OU also allows opening
semaphores with initial values that are negative or 0. The minimum
value is -32767. If the semaphore must be reset to its initial value
of 0 at a later time, then a call can be made to the drain routine (see
SEM$DR below).

8-5 First Edition

SUBROUTINES, VOLUME III

Cooperation of Processes

It should be remembered that a semaphore is a structure that
cooperating processes can use to control their access to resources, or
to coordinate their execution. The operating system does not verify
that the semaphore is being used correctly since the association
between the semaphore and the event or resource is merely a convention
adopted by the processes involved.

In order for the semaphore facility to work correctly, all processes
that want to wait for an event or a resource must first wait on its
associated semaphore before using the resource or assuming that the
awaited event has occurred. There is nothing to stop the careless
programmer from using a shared resource without first waiting on the
appropriate semaphore. Such coding practices will most likely cause
the entire subsystem of processes to malfunction.

PRIME SEMAPHORES

On Prime computers, a semaphore consists of two consecutive,
nonpageable 16-bit halfwords of memory. The wait and notify operations
are implemented in firmware and are usable by supervisor software only.
So that users can use the semaphore facility, four calls have been
created that perform the wait and notify operation on a set of
semaphores that are reserved by the operating system for user programs:

• SEM$WT

• SEM$TW

• SEM$TN

• SEM$NF

There are 1024 named semaphores available to user processes, and 65
numbered semaphores.

Numbered Semaphores and Timers

Internal to PRIMOS is an array of 65 numbered semaphores reserved for
the use of user processes. All reference to these semaphores is by the
index of the semaphore, an integer from 0 to 64. Other than ensuring a
valid semaphore number, PRIMOS makes no stipulations for semaphore use
such as which users can access which semaphores, etc. Allocation and
cooperative use of the semaphores is strictly under user control.

Of the 65 user semaphores, up to 15 can be used at any time as timed
semaphores, that is, semaphores that are periodically notified by the
system clock process. (See the SEM$TN routine.) Again, allocation of

First Edition 8-6

SEMAPHORES AND TIMERS

timed semaphores is on a first-come/first-served basis, and nothing is
done to prevent incorrect use of a timed semaphore.

Numbered semaphores are assigned by the operating system as wait or
notify calls made to those numbers. No open or close request is
necessary. It is your responsibility to use the number that has been
agreed upon for a particular resource.

Named Semaphores

The operating system maintains a pool of semaphores that it can assign
to user processes. When a process wishes to use one or more named
semaphores, it must first ask the operating system to assign it to the
process. The process requests access to named semaphores via an open
routine. The user can request that multiple semaphores be assigned to
it in a single call to this routine. The operating system returns a
set of numbers to the process if it decides that the requested
semaphores can be assigned to that process. The process uses these
numbers in all subsequent calls to semaphore routines to indicate on
which semaphore to perform the semaphore operation.

The operating system can tell when different processes wish to use the
same set of semaphores by examining the parameters that they include in
the call to the open routine.

See SEM$OP and SEM$OU below for more details on how to use the open
call.

After a process has opened a set of semaphores, it can do any number of
operations on those semaphores. The possible semaphore operations are
given in the descriptions of the subroutines.

When a process has finished using the named semaphores that were
assigned to it, it requests that the operating system close those
semaphores, thus making them inaccessible to the process. When all
processes finish using a given semaphore, then the operating system
closes it and returns the memory space used by that semaphore to the
operating system's free pool so that it may be assigned to other
processes.

When a process logs out, all named semaphores that were opened by the
process but not closed are closed automatically. If this process was
the last user of a semaphore, the space used by the semaphore is
returned to the free pool.

The routines that handle named semaphores are not available in R-mode.

8-7 First Edition

SUBROUTINES/ VOLUME III

CODING CONSIDERATIONS

Numbered vs. Named Semaphores

There are two methods by which a process can specify which semaphores
it intends to use. Also, there are two sets of semaphores maintained
by the operating system. One set is available to any process that
wishes to use it, and its semaphores are identified by number. When a
process wishes to use one of these semaphores, it specifies the number
of the desired semaphore in the parameter list of the semaphore
routines. This set of semaphores is called numbered semaphores.
Numbered semaphores are easy to use, but they have a major drawback:
there is nothing to prevent other processes from using the same
semaphore for different purposes. Therefore, all users of the system
must agree on the usage that each numbered semaphore will have;
otherwise, confusion will result.

To eliminate the problems caused by the sharing of numbered semaphores,
a second set of user semaphores was created. These are called named
semaphores because they are associated with a file. Semaphores in this
set cannot be used by a process until they are opened. Opening a
semaphore means that the process must call the routine SEM$OP or
SEM$OU, which will assign semaphores from the pool for the process to
use. Each routine returns a set of numbers that can be used instead of
numbered semaphore numbers in all other semaphore routine calls. Only
valid semaphore numbers that have been assigned to a process by SEM$OP
or SEM$OU can be used in subroutine calls that manipulate named
semaphores. An attempt to use any other numbers will result in an
error return from the routine.

To open a set of named semaphores, a routine must associate them with a
file system object. SEM$OP will open a set of named semaphores and
associate them with the name of a file in the current UFD of the
process performing the open operation. SEM$OU will open a set of named
semaphores and associate them with a file open on a particular file
unit. In both cases, the process must have read access to the file.

Timers and Timeouts

When a process waits on a semaphore, it anticipates that it will be
notified within a reasonable amount of time. If, for some reason, the
process that is going to notify the semaphore fails to do so, all
processes waiting on that semaphore will continue to wait, possibly for
a very long time. To guard against processes waiting forever, a timer
mechanism can be used.

Named Semaphore Timers: To prevent a process from waiting forever on a
named semaphore, a special wait routine exists (called SEM$TW), which
takes a semaphore number and a time value as parameters. The process
waits on the specified semaphore until the semaphore is notified or
until the specified amount of realtime has passed. The routine returns ^

>

First Edition 8-8

SEMAPHORES AND TIMERS

a value to the process that indicates why the process was allowed to
continue. A value of 0 means that the semaphore was removed from the
wait queue because of a notify by another process. A value of 1 means
that the process was allowed to continue because the specified time had
elapsed without a notify on that semaphore. It is also possible for a
value of 2 to be returned; this return value indicates that the
process was stopped by someone pressing the BREAK key or CONTROL-P at
the terminal controlling the process, and then typing START. This
sequence causes the operating system to abort the process, thus
removing it from the semaphore on which it was waiting, followed by a
restart of the process at the wait call.

Numbered Semaphore Timers: The timer facility for numbered semaphores
allows a semaphore to be automatically notified after a certain amount
of time has passed. A user process tells the operating system, via a
subroutine call, that a timer is to be associated with a numbered
semaphore. The process also specifies the amount of time that should
pass before the operating system notifies the semaphore. When this
amount of time has passed, the operating system notifies the semaphore.

Much care is needed when coding programs that use semaphores with this
kind of timer. If another method is not used besides the semaphore to
indicate that the awaited event has actually occurred, then a notify
caused by a timer cannot be distinguished from a notify caused by a
process. The processes using the semaphore should, therefore, be coded
so that they can verify that a notify by another process has occurred
before using the resource protected by the semaphore. The action that
is taken when a timer notifies the semaphore should be agreed upon by
all of the processes using the timed semaphore.

PITFALLS AND HOW TO AVOID THEM

External Notifies

When a semaphore is notified for some reason other than an explicit
call to the notify routine, that notify is called an external notify;
that is, it originated from a source external to the processes that are
using the semaphore. Some of the reasons that an external notify may
occur are listed here.

Expiration of a Timer: When a timer is set for a numbered semaphore,
and that timer expires, the operating system will notify the semaphore.
This semaphore will look like an external notify to the processes that
use the semaphore; the fact that the notify is external can be
detected if the processes are coded properly. (See Coding Suggestion
below.)

The notify caused by a timeout can be useful in cases when the process
that is supposed to notify the semaphore is prone to being aborted.

8-9 First Edition

SUBROUTINES, VOLUME III

The notify initiated by the operating system prevents processes from
waiting forever.

Use of timers with named semaphores causes a code to be returned to the
process that indicates when a timeout has occurred.

Malfunctioning Process: Like all other programs, processes that are
supposed to be using a semaphore sometimes do not behave properly.
Malfunctioning programs can do extra notify calls and thereby cause
what appear to be external notifies. Also, processes that are not
supposed to be using a numbered semaphore may decide to use it anyway.
Unless the semaphore can be protected from such interference, then what
appears to be an external notify will result.

Process Quit: The semaphores that a user process can access on a Prime
system are called guittable semaphores. This means that a process that
is waiting on a semaphore can be stopped by pressing the BREAK key or
CONTROL-P at the terminal controlling the process. When a process is
stopped by this means, and then continued (by using the PRIMOS START
command), the process will reexecute the wait operation.

Coding Suggestion; Since semaphores can be notified by breaks and
timeouts as well as by explicit calls to SEM$NF, and since this could
cause malfunctions in a subsystem, it is always best to code in such a
way that this situation can be detected. This means that a process
should not rely solely on the semaphore to indicate that a resource is
really available or that an event has actually occurred. A good
practice is to have one additional method, besides the semaphore, to
indicate what the current state of the resource or event is.

One such method is to have a halfword in shared memory (accessible by
all cooperating processes) that is set to indicate that the event has
really occurred or that a resource is free. Before a process notifies
a semaphore, it sets this halfword to an agreed value. When the
process is allowed to proceed from a semaphore wait, it should check
the value contained in that halfword. If the halfword contains the
value, it will know that the semaphore was notified by a cooperating
process, and not by the operating system. In this case, the process
will clear the halfword, do its processing, and reset the halfword to
the agreed-upon value just before notifying the semaphore. If a
process proceeds from a wait call and the halfword is not set to the
agreed-upon value, it can assume that the operating system notified the
semaphore and can re-issue the wait call.

First Edition 8-10

SEMAPHORES AND TIMERS

Infinite Waits

It is possible to create a situation in which one or more processes are
waiting on a semaphore, and there are no processes running that will
ever notify that semaphore. The following are methods of creating this
situation.

Multiple Waits; If a process issues a wait call, and is not queued,
and then continues to re-issue the wait call without intervening
notifies, that process will eventually cause the semaphore count to
become greater than 0 and the process will wait. This of course
assumes that there is not another process somewhere doing multiple
notifies.

In the case of a resource-protection semaphore, if all other processes
obey the rules, they will wait on this semaphore before they notify it.
They will therefore queue up behind the multiple-waiter process.
Eventually, all the processes of the subsystem will become queued on
the semaphore queue, and no process will remain to notify the
semaphore.

Aborted Notifiers: Another way of causing infinite waits is to abort a
process that would, under normal circumstances, notify a semaphore. If
this is the only process that will do notifies on the semaphore, then
all other processes that wait on it will wait forever.

Coding Suggestion; Infinite waits can be avoided by associating a
timer with the semaphore. This will guarantee that one or more
processes will eventually be removed from the wait queue. Extra coding
must be done in the processes, however, so that a timeout can be
identified as such, and so that appropriate action can be taken. This
code should determine whether the process that should have notified the
semaphore is still running or not. If it is running, the notify is
considered external and the process re-issues the wait call. If the
potential notifiers have all been aborted, appropriate recovery action
should be initiated.

Deadly Embrace

When multiple semaphores are being used, a situation called deadly
embrace can occur. This happens when two processes gain rights to use
a resource by waiting on the appropriate semaphore for that resource,
and then each attempts to acquire the resource that is being used by
the other process. Neither process will ever notify the semaphore for
the resource it holds (it is waiting to get access to a second
resource), and no other process will ever notify the semaphores (since
each resource is held already by one of the two processes). Therefore,
both processes will wait forever.

8-11 First Edition

SUBROUTINES, VOLUME III

This situation can neither be detected nor prevented by the semaphore
facility. It can be prevented, however, by the processes using the
semaphores, if the following procedure is used.

Each semaphore that a system of processes will use is assigned a
different number; this number will be called the semaphore's level
number. Processes can only issue a wait call for a semaphore whose
level number is greater than the level number of any semaphore it has
waited on but has not yet notified. For example, if the level numbers
for three semaphores are 1, 2, and 3, and a process has waited on the
second semaphore (level 2), but has not yet notified it, then the
process can legally issue a wait for the third semaphore (level 3) but
not for the first, since level 1 is numerically less than level 2.

This technique, if strictly followed, makes deadly embrace situations
impossible. It is sometimes practical for processes to call a routine
that checks for level number violations before issuing a wait call. If
all processes use this routine instead of the wait routine, then deadly
embrace is prevented.

LOCKS

Locks, like semaphores, are a method that programs or processes can use
to coordinate their usage of some resource. Before a process attempts
to use a resource that is protected by a lock, it calls a routine that
grants or denies permission to use the resource or causes the process
to wait until the resource becomes free. When the process has been
given permission to use the resource, it is said to hold the lock on
that resource. When the process is through using the resource, it
calls another routine to indicate that it is done. This operation is
called giving up the lock, or releasing the lock, on that resource.

Various types of locks exist, some of which will be discussed in this
section.

Some types of locks behave very much like semaphores and, in fact, many
types of locks can be coded with the use of semaphores. Semaphores,
unlike locks, allow a small, well-defined set of operations to be
performed, but the uses and types of locks that can be coded vary
greatly.

Mutual Exclusion

Mutual-exclusion locks are used when only one or a few processes are
allowed to use a resource at any given time. When a process requests
ownership of a lock for the resource, it is given the lock if no other
process currently holds it. If the lock is held by another process,
all others must wait until the one holding the lock gives it up.

First Edition 8-12

SEMAPHORES AND TIMERS

This type of lock can be implemented directly with the use of
semaphores. Requesting the lock is equivalent to a wait operation on a
semaphore; giving up the lock is equivalent to a notify of that
semaphore.

Since external notifies may occur, it is a good practice to expect them
and to code in such a way that they can be detected and ignored.

Nl Locks

Nl locks are used to protect objects that can be read and modified
simultaneously, such as files and data bases. This type of lock allows
any number of users to read the object, or one process to modify the
object. In the PRIMOS filing system, this is referred to as an N
readers or one writer lock. When a process requests permission to read
the object, such permission is granted immediately, as long as there is
not currently a process modifying it. Requests to gain access to the
object for modification are granted only if there are no other readers
or writers using the object. If another process is using the protected
object, the writer is placed on a queue and must wait until all current
users of the resource indicate that they are done. If a writer is
waiting to use the resource, then no other requests for use of the
object are granted until that process has used the object. This
prevents readers from gaining access to the object and causing the
writer's request to be delayed indefinitely.

When a writer is given access to the object, all other requests for
access are queued. When the writer finishes, the other requests are
processed.

Use of an Nl lock on a file eliminates data loss that can sometimes
occur when multiple processes are allowed to update the same file
simultaneously.

Producers and Consumers

In many computer systems, certain processes create work that must be
processed, such as device drivers that read data from a device that
must be routed to the correct place, or print programs that place data
files into spool queues to be printed. These work-producing processes
are called producers.

Other processes in a system process the work created by the producers.
These processes are called consumers. Examples of consumers include a
user process that manipulates data coming into the system from a
peripheral device, or a spooler that prints files in response to a
user's print requests.

8-13 First Edition

SUBROUTINES, VOLUME III

The coordination required between producer processes and their
corresponding consumer processes can be achieved with the use of
producer-consumer locks.

Producers call a routine that indicates that there is work to process.
The routine keeps track of the number of producers that have called it;
each call indicates that another unit of work is available. Consumers,
on the other hand, call a routine that checks to see if there is any
work to do. If there is no work, the routine causes the consumer
process to wait until there is work, that is, a producer calls the
I-have-work-to-do routine. If there is work to do, the consumer
process is allowed to continue, and the counter of units of work left
to do is decremented.

This lock can be coded directly with semaphores. A semaphore, with its
counter initialized to 0, serves as the locking mechanism. Producers
notify the semaphore, causing it to become negative; consumers wait on
the semaphore, causing it to rise toward 0. If there is no work to do
(semaphore counter equal to 0), then a consumer will be queued, when it
waits on the semaphore, until work becomes available.

Note that there can be any number of producers or consumers. If
multiple consumers wait for work, and there is none to do, then the
semaphore counter will contain a value equal to the number of queued
consumer processes. A notify by a producer allows one of the consumers
to proceed.

Since semaphores are subject to external notifies, it is advisable that
a counter, other than the counter that is a part of the semaphore, be
maintained to indicate how much work is available for consumer
processes. Producers increment this counter; consumers take work from
the work queue and decrement this counter. If a consumer is notified
out of the semaphore queue and the counter does not match the semaphore
counter, then it can assume that an external notify has occurred.

Record Locks

When many processes must update a file, and speed is important, it is
not practical to use a lock that protects the entire file, since any
update request would lock all other processes out of the file.
Considerable overlap in processing can usually be achieved if just the
portion of the file that is being updated by a process is locked.
Usual units to lock are the record or the page being updated.

If the file is large, then it becomes impractical or impossible to have
an individual lock for each record or page to be protected. One way of
overcoming this difficulty is to assign locks from a pool on a
temporary basis. When a process wishes to update a record, for
example, it requests a lock by passing the record number in question to
the lock routine. If there is currently no one holding a lock on that
record (the lock routine scans its list of locks being held by other
processes), then a lock is assigned from a free pool and the record

First Edition 8-14

SEMAPHORES AND TIMERS

number supplied is remembered. If a lock is requested for a record
that is currently locked by another process, then the second and
subsequent requesters of the lock are forced to wait. When the last
holder of a lock gives up the lock, and there are no other processes
waiting to use the record protected by that lock, then the lock itself
is returned to the pool of free locks. It can then be used for other
record locks.

In general, the pool of locks needs to be as large as the expected
maximum number of records that can be locked at any given time. It is
the lock routine's responsibility to manage the lock pool and to deal
with the problems that arise when there are no more free locks in the
pool. One method of dealing with this situation is to use a
no-free-locks semaphore. If there are no free locks in the pool, the
process requesting the lock is forced to wait on this semaphore. The
lock routine notifies this semaphore when a lock becomes available.

Notice that record locks are really mutual-exclusion locks; however,
the object that is being protected by any given lock changes with time.
The lock routine must include a small data base that is used to
remember what is being protected by each lock.

8-15 First Edition

SUBROUTINES, VOLUME III

SEMAPHORE ROUTINES

This section describes the following subroutines:

Routine Function

SEM$CL Releases (closes) a named semaphore.

SEM$DR Drains a semaphore.

SEM$NF Notifies a semaphore.

SEM$OP Opens a set of named semaphores.

SEM$OU Opens a set of named semaphores.

SEM$TN Periodically notifies a semaphore.

SEM$TS Returns number of processes waiting on a semaphore,

SEM$TW Waits on a specified named semaphore, with timeout.

SEM$WT Waits on a semaphore.

First Edition 8-16

SEMAPHORES AND TIMERS

SEM$CL

Purpose

SEM$CL releases (closes) a semaphore.

Usage

DCL SEM$CL ENTRY (FIXED BIN, FIXED BIN) ;

CALL SEM$CL (snbr, code);

Parameters

snbr

INPUT. A semaphore number; it must be a number assigned to a
named semaphore by the SEM$OP or SEM$OU routine.

code

OUTPUT. Standard error code. Possible values are

0 Success.

E$BPAR An invalid value was supplied for snbr.

Discussion

When a process no longer needs a named semaphore, it can tell the
operating system that it is done with the semaphore by calling SEM$CL.
This call closes the semaphore. After this call, the specified
semaphore number cannot be used again by the process unless that same
number is reassigned by another call to SEM$OP or SEM$OU.

When a process logs out, all semaphores that were opened by that
process but not explicitly closed are automatically closed by the
operating system.

8-17 First Edition

SUBROUTINES, VOLUME III SEM$CL

Loading- and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 8-18

SEMAPHORES AND TIMERS

SEM$DR

Purpose

SEM$DR resets ("drains") the specified semaphore counter to 0

Usage

DCL SEM$DR ENTRY (FIXED BIN, FIXED BIN) ;

CALL SEM$DR (snbr, code);

Parameters

snbr

INPUT. A semaphore number; it can be either a number in the
allowable range for numbered semaphores (0-64), or it can be a
number assigned to a named semaphore by the SEM$OP or SEM$OU
routine.

code

OUTPUT. Standard error code. Possible values are

0 Success.

E$BPAR An invalid value was supplied for snbr.

E$BDAT Indicates bad data supplied; the System Administrator
should be notified.

Discussion

The counter is set to 0 if, at the time of the SEM$DR call, the
semaphore's counter is less than or equal to 0. If, however, the
counter is greater than 0, then notifies are done on the semaphore
until the counter reaches 0. This causes all processes that were
waiting on the semaphore to be removed from the wait queue of the
semaphore.

It is possible for processes to be placed on the wait queue while this
call is executing. These added processes may not be removed when the
SEM$TS call returns to its caller.

8-19 First Edition

SUBROUTINES, VOLUME III SEM$DR

Loading and Linking Information / ^

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 8-20

SEMAPHORES AND TIMERS

SEM$NF

Purpose

SEM$NF releases the next process waiting on a semaphore ("notifies" the
semaphore).

Usage

DCL SEM$NF ENTRY (FIXED BIN, FIXED BIN);

CALL SEM$NF (snbr, code);

Parameters

snbr

INPUT. A semaphore number; it can be either a number in the
allowable range for numbered semaphores (0-64), or it can be a
number assigned to a named semaphore by the SEM$OP or SEM$OU
routine (FIXED BIN).

code

OUTPUT. Standard error code. Possible values are

0 Success.

E$BPAR Indicates that an invalid value was supplied for snbr.

E$SEMO Indicates that the semaphore count became too small to
be decremented.

E$BDAT Indicates that bad data was supplied; the System
Administrator should be notified.

Discussion

The notify and wait operations are the basic functions that can be
performed on a semaphore. A notify decrements the semaphore's counter
and releases the first process from the wait queue, if there are any
processes waiting.

8-21 First Edition

SUBROUTINES, VOLUME III SEM$NF

A wait increments the semaphore's counter and places the process on the
semaphore's queue if the counter becomes greater than 0. Processes are
queued first-in/first-out within process priority; higher priority
processes are queued before those with lower priority.

The wait procedure is SEM$WT. This is described later in this chapter.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 8-22

SEMAPHORES AND TIMERS

SEM$OP

SEM$OU

Purpose

These routines open a semaphore.

Usage

DCL SEM$OP (CHAR(32), FIXED BIN, FIXED BIN, (*)FIXED BIN, FIXED BIN);

CALL SEM$OP (fname, namlen, snbr, ids, code);

DCL SEM$OU (FIXED BIN, FIXED BIN, (*) FIXED BIN, FIXED BIN, FIXED BIN);

CALL SEM$OU (funit, snbr, ids, init_val, code);

Parameters

fname

INPUT. A filename, as discussed below,

funit

INPUT. The number of a file unit that has already been opened,

namlen

INPUT. The number of characters in fname.

snbr

INPUT. A number that specifies how many semaphores are to be
opened by this call.

ids

OUTPUT. An array of semaphore numbers; one number is returned for
each semaphore that was successfully opened. There must be at
least snbr elements in ids.

8-23 First Edition

SUBROUTINES, VOLUME III SEMOP/SEMOU

init_val

INPUT. The initial value (-327 67 to 0) to be assigned to the
semaphore.

code

OUTPUT. Standard error code. Possible values are

0 Success.

E$BPAR An invalid value was supplied for snbr, namien, or
init_val.

E$IREM A file that is on a remote disk was specified in the
fname parameter — remote files cannot be used as
parameters to this call.

E$FUIU Either the user has all available file units opened,
or there are no available named semaphores.

E$UNOP Unopened file unit.

E$BUNT Bad file unit.

It is also possible that code will be set to any error code that
can be returned by the SRCH$$ routine.

Discussion

To open a set of named semaphores, a call must associate them with a
file system object. SEM$OP opens a set of named semaphores associated
with the name of a file in the current UFD of the process performing
the open operation. If the process has at least read-access rights to
the file, it will be assigned the semaphores. Each semaphore is
initialized to 0. SEM$OU opens a set of named semaphores, associating
with them a file open on a particular file unit. As before, if the
process has at least read-access rights to the file, it is assigned the
semaphores. Unlike SEMOP, SEMOU allows each semaphore within the set
to be initialized to a nonpositive value, not less than -32767 decimal.
All calls to either SEM$OP or SEM$OU that use the same file result in
the same semaphore numbers being returned.

It is possible for a number of processes to have access to a set of
semaphores while other processes are denied access to the same
semaphores. These semaphores are called protected or named semaphores
and are discussed in the introduction to this chapter.

First Edition 8-24

SEMOP/SEMOU SEMAPHORES AND TIMERS

To access a named semaphore, a call must be made to SEM$OP, which
grants or denies access to the semaphore. The process supplies a
filename to the call. If the specified file can be accessed for read
access, subject to file system and ACL protections, then the user is
given access to the requested semaphores. Multiple semaphores can be
opened in a single call by supplying the number of semaphores needed in
the snbr parameter.

If access is granted to the semaphores, then the call returns an array
of semaphore numbers in the ids parameter. One number is returned for
each semaphore requested in snbr, assuming enough semaphores exist in
the system pool. A semaphore number of 0 is returned if a semaphore
could not be assigned. In addition, code is nonzero if one or more
semaphore numbers could not be assigned. The values returned in ids
should be examined to determine which semaphores were opened (nonzero
value returned), and which were not (0 value returned).

The semaphore numbers returned should be used in all other semaphore
calls as the semaphore number parameter. SEM$OP takes a filename and
returns semaphore numbers; SEM$OU takes a file unit; the rest of the
calls accept only a semaphore number.

If different processes call SEM$OP or SEM$OU and specify the same
filename or file unit, the same semaphore numbers will be returned to
each process. This allows multiple processes of a subsystem to
reference common semaphores.

If a call to the open routine specifies the same filename or unit
number as a previous call to open, and a larger number of semaphores is
requested, then new semaphores are acquired from the system pool to
make up the difference between the number currently open (with that
filename or unit number) and the number requested in the call. Other
processes cannot use these newly assigned semaphores unless they
explicitly open them via a call to the open routine.

When the first process opens a named semaphore, the operating system
sets the value of the semaphore counter to 0 or to the number specified
by SEM$OU. Subsequent opens of the semaphore do not alter the value of
the counter. If a process opens the same semaphores more than once,
then the same semaphore numbers are returned for each call. No matter
how many times a process opens a semaphore, it need only close that
semaphore once. This removes the burden of counting to be sure that
equal numbers of open and close calls are done.

Named semaphores can only be opened for files that reside on a local
computer system. Attempts to open named semaphores with filenames that
are on remote disks will result in failure; no semaphore numbers are
assigned and code are set to E$IREM.

If a file that was used in a call to SEM$OP or SEM$OU is deleted or
renamed while the semaphores assigned by such a call are still open, or
if the disk on which that file resides is shut down, then the open
semaphores will continue to be accessible to the processes that already
have them open. New processes will not be given access to those

8-25 First Edition

SUBROUTINES, VOLUME III SEMOP/SEMOU

semaphores, even if the disk is added again, or if a file is created
with the same name as the one that was renamed or deleted. Processes
that have the semaphores open can continue to use them until they are
closed via a call to SEM$CL.

If a process logs out before all named semaphores have been closed,
then those that are still open will be automatically closed by the
operating system.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries:

R-mode: Not available.

Load NPFTNLB.

First Edition 8-26

SEMAPHORES AND TIMERS

f- SEM$TN

Purpose

This operation causes the operating system to notify the specified
semaphore on a periodic basis. This procedure can be used only on
numbered semaphores.

Usage

DCL SEM$TN ENTRY (FIXED BIN, FIXED BIN(31), FIXED BIN(31), FIXED BIN);

CALL SEM$TN (snbr, intl, int2, code);

Parameters

snbr

INPUT. A semaphore number; it must be a number in the allowable
range for numbered semaphores (0-64).

intl

INPUT. The amount of clock time (in milliseconds) that will pass
before the system notifies the semaphore the first time.

int2

INPUT. The amount of clock time (in milliseconds) that will pass
before the semaphore is notified the second and subsequent times.
If int2 is 0f then the semaphore will only be notified once: after
intl milliseconds. Specifying both intl and int2 as 0 will remove
a previous timer request from the semaphore. This is necessary
when a previous SEM$TN call was made with intl and int2 both
nonzero.

If a call is made to SEM$TN that specifies a semaphore that already
has an active timer request, then the values of intl and int2
specified in the latter call overwrite the values stored in the
active timer.

Note

It is possible to indefinitely delay a notify caused by a
timeout by making repeated calls to SEMSTN.

8-27 First Edition

SUBROUTINES, VOLUME III SEM$TN

code

OUTPUT. Standard error code. Possible values are

0 Success.

E$BPAR An invalid value was supplied for snbr, intl, or int2.

E$NTIM The operating system has no more timers available.

E$BDAT Bad data supplied; the System Administrator should be
notified.

Discussion

The operating system maintains a limited number of timers for numbered
semaphores. Currently, there are a total of fifteen such timers per
system.

The time intervals, quoted in milliseconds, are truncated to the
nearest tenth of a second before being used.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries:

R-mode: No special action.

Load NPFTNLB.

First Edition 8-28

SEMAPHORES AND TIMERS

/S^v

SEM$TS

Purpose

SEM$TS tests the counter for the number of processes waiting in the
queue for a semaphore.

Usage

DCL SEM$TS ENTRY (FIXED BIN, FIXED BIN) RETURNS (FIXED BIN) ;

sval = SEM$TS (snbr, code);

Parameters

sval

RETURNED VALUE. The current value of the specified semaphore's
counter halfword.

snbr

INPUT. A semaphore number; it can be either a number in the
allowable range for numbered semaphores (0-64), or a number
assigned to a named semaphore by the SEM$OP or SEM$OU routine.

code

OUTPUT. Standard error code. Possible values are

0 Success.

E$BPAR An invalid value was supplied for snbr.

Discussion

This operation returns in sval the current value of the counter, for
the semaphore numbered snbr.

8-29 First Edition

SUBROUTINES, VOLUME III SEM$TS

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 8-30

SEMAPHORES AND TIMERS

f* SEM$TW

Purpose

This routine allows a process to wait on the specified semaphore until
it is taken off the wait queue by a notify, or until a specified amount
of realtime has elapsed, whichever comes first. It is used only for
named semaphores.

Usage

DCL SEM$TW ENTRY (FIXED BIN, FIXED BIN, FIXED BIN);

CALL SEM$TW (snbr, intl, code);

Parameters

snbr

INPUT. A semaphore number; it must be a number assigned to a
named semaphore by the SEMSOP or SEM$OU routine.

intl

INPUT. A time interval expressed in tenths of a second of clock
time.

code

OUTPUT. A value that indicates why the process was allowed to
continue, or a standard error code. Possible values are

0 The process was notified by a call to SEM$NF.

1 The specified amount of time has elapsed and the
process has not yet been notified out of the wait
queue.

2 The process was aborted, for example, by a quit or
forced logout.

E$BPAR An invalid value was supplied for snbr or intl.

E$BDAT Bad data supplied; the System Administrator should be
notified.

8-31 First Edition

SUBROUTINES, VOLUME III SEM$TW

Loading and Linking Information <^\

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 8-32

SEMAPHORES AND TIMERS

r SEM$WT

Purpose

SEM$WT places a process in the queue for a semaphore.

Usage

DCL SEM$WT ENTRY (FIXED BIN, FIXED BIN);

CALL SEM$WT (snbr, code);

Parameters

snbr

INPUT. A semaphore number; it can be either a number in the
allowable range for numbered semaphores (0-64), or a number
assigned to a named semaphore by the SEM$OP or SEM$OU routine.

code

OUTPUT. Standard error code. Possible values are

0 Success.

E$BPAR An invalid value was supplied for snbr.

E$BDAT Bad data supplied; the System Administrator should be
notified.

Discussion

The notify and wait operations are the basic functions that can be
performed on a semaphore. Notify decrements the semaphore's counter
and releases the first process from the wait queue, if there are any
processes waiting.

Wait increments the semaphore's counter and places the process on the
semaphore's queue if the counter becomes greater than 0. Processes are
queued first-in/first-out within process priority; higher priority
processes are queued before those with lower priority.

The notify procedure is SEM$NF, described later in this chapter.

8-33 First Edition

SUBROUTINES, VOLUME III SEM$WT

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 8-34

SEMAPHORES AMD TIMERS

LIMIT TIMER ROUTINE

This section describes the following subroutine:

Routine Function

LIMIT$ Sets and reads various timers.

/&*\

8-35 First Edition

SUBROUTINES, VOLUME III

LIMIT$

Purpose

LIMIT$ allows the setting of various timers within PRIMOS, each
generating a signal if expired. The timer values may also be read.

Usage

DCL LIMIT$ ENTRY (FIXED BIN, FIXED BIN(31), FIXED BIN, FIXED BIN);

CALL LIMIT$ (key, limit, res, code);

Parameters

key

INPUT. This key is split into two 8-bit functions. The right half
is as follows:

1 Read the limit.

2 Set the limit.

The left half is as follows:

1 CPU limit in seconds.

2 Login limit in minutes.

5 CPU watchdog in seconds.

6 Realtime watchdog in minutes.

7 Realtime watchdog in seconds.

limit

INPUT. The time to be set in minutes or seconds,

res

INPUT. Reserved—must be zero.

First Edition 8-36

LIMIT$ SEMAPHORES AND TIMERS

code

OUTPUT. Standard error code. Possible values are

0 No error.

E$BKEY Invalid value specified in key.

E$BPAR Invalid value specified for limit, or nonzero value
specified for res.

Discussion

A watchdog timer is a timer that starts counting when LIMIT$ is called,
and "expires" when the indicated realtime or CPU processing time has
elapsed.

If LIMIT$ is called to set the CPU or realtime (login) limit, the user
will be logged out when the interval expires. If LIMIT$ is called to
set a realtime watchdog, then the condition ALARM$ will be signalled
when the interval expires. If LIMIT$ is called to set a CPU watchdog,
then the condition CPU_TIMER$ will be signalled when the interval
expires.

Any of the timers can be canceled by calling LIMITS with the key value
that was used for setting the timer and a limit value of zero.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

8-37 First Edition

SUBROUTINES, VOLUME III

PROCESS DELAY ROUTINES

This section describes the following subroutines:

Routine Function

SLEEP$ Suspends a process for a specified interval.

SLEP$I Suspends a process (interruptible) .

First Edition 8-38

SEMAPHORES AND TIMERS

SLEEP$

Purpose

SLEEP$ suspends a process for a specified interval.

Usage

DCL SLEEP$ ENTRY (FIXED BIN(31));

CALL SLEEP$ (interval);

Parameters

interval

INPUT. A variable containing the interval, in milliseconds, for
which execution is to be suspended.

Discussion

Execution of the user process is suspended for the specified interval•
An interval less than 0 will have no effect. A QUIT and START from the
user terminal will cause immediate reexecution of the SLEEP$ call.

Note

Although the sleep interval is specified in milliseconds,
SLEEP$ truncates it to an accuracy of tenths of seconds.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

8-39 First Edition

SUBROUTINES, VOLUME I I I

SLEP$I

Purpose

This procedure suspends the process for a specified interval.

Usage

DCL SLEP$I ENTRY (FIXED BIN(31));

CALL SLEP$I (interval);

Parameters

interval

INPUT/OUTPUT. Defines the delay interval in units of tenths of a
second. The user's variable is continually updated with the amount
of time remaining.

Discussion

Execution of the user process is suspended for interval tenths of a
second. An interval less than 0 will have no effect. If the wait is
interrupted (for example/ by a terminal QUIT), an on-unit can read the
value of the parameter to determine the amount of time remaining to
sleep. This contrasts with SLEEP$, which does not update its
parameter.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 8-40

9
Message Facility

The PRIMOS MESSAGE feature includes calls for sending and receiving
interuser messages. The subroutines can also set and query a user's
willingness to receive messages. Messages may be sent in either
immediate mode or deferred mode (to be delivered at command level
only), and may be addressed with either a user name or a user number.
Reception may also be controlled/ allowing users to select one of three
modes of reception: receive at any time, receive at command level
only, or never receive.

9-1 First Edition

SUBROUTINES, VOLUME III

MESSAGE FACILITY ROUTINES

This section describes the following subroutines:

Routine Function

MSG$ST Returns the receiving state of a user,

MGSET$ Sets the receiving state for messages.

RMSGD$ Receives a deferred message.

SMSG$ Sends an interuser message.

First Edition 9-2

MESSAGE FACILITY

#**. MSG$ST

Purpose

MSG$ST allows the caller to determine the receive state of processes.
If the caller supplies a specific user number, the receive state and
user name of that process are returned. If the caller supplies a user
name, the user number and receive state of the most permissive user
with the specified name are returned.

Usage

DCL MSG$ST ENTRY (FIXED BIN, FIXED BIN, CHAR(*), FIXED BIN, CHAR(*),
FIXED BIN, FIXED BIN);

CALL MSG$ST (key, user_num, system_name, system_name_len,
user_name, user_name_len, receive_state);

Parameters

key

INPUT. Can be either of the following:

K$READ Return the user's name and state for user user_num on
system system_name.

2 Return the user's number and state for user user_jname
on system system_name.

user_num

INPUT or OUTPUT. The user number of the process. If key = K$READ,
user_jium is provided by the user. If key = 2, user_num is provided
by the user and updated by the subroutine.

system_name

INPUT. The name of the system on which the desired process is
found.

system_-name_len

INPUT. The length of system_name in characters. If
system_jiame_len = 0, the local system is assumed.

9-3 First Edition

SUBROUTINES, VOLUME III MSG$ST

user_jiame

INPUT or OUTPUT. The user name of the process. If key = K$READ,
this parameter is returned by the subroutine. If key = 2, this
parameter is provided by the user.

use r_name_len

INPUT. The length of user_name in characters.

receive_state

OUTPUT. The receive state of the process. This parameter can be
any of the following:

K$ACPT Accepting all messages.
K$DEFR Accepting deferred messages only.
K$RJCT Rejecting all messages.
K$NONE User does not exist.
K$BKEY Invalid state, bad key.
K$BREM Invalid state, bad system_name.

Discussion

If key = 2, the search for the users whose names match user__name begins
at user_num + 1. This will help the programmer to scan all users with
the same name, by setting user_num to 1 at the first call and repeating
the call until a nonzero code is returned.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

First Edition 9-4

MESSAGE FACILITY

MGSET$

Purpose

MGSET$ is used to set the message receive state of the calling process.
The receive state determines the willingness of the process to accept
messages sent to it.

Usage

DCL MGSET$ ENTRY (FIXED BIN, FIXED BIN);

CALL MGSET$ (key, code);

Parameters

key

INPUT. A standard system key that specifies the receive state to
be set.

K$ACPT Accept all messages.
K$DEFR Accept only deferred messages.
K$RJCT Reject all messages.

code

OUTPUT. Standard error code.

E$BKEY Bad key.

0 No error.

Discussion

There are three possible states that a process may have: accept all
messages, accept only deferred messages, and reject all messages.
Messages that are deferred are not necessarily delivered immediately
when sent, but rather are stored in buffers by the system and delivered
later. Deferring messages allows the receiver to accept messages at
convenient times rather than at times convenient to the sender. Users
may explicitly request waiting deferred messages via the RMSGD$ call,
or they may allow the system to deliver deferred messages automatically
after PRIMOS commands complete their execution.

9-5 First Edition

SUBROUTINES, VOLUME III MGSET$

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 9-6

MESSAGE FACILITY

RMSGD$

Purpose

RMSGD$ returns waiting deferred messages to the caller. This routine
does not return immediate messages. Users wishing to obtain all
messages via this routine must inhibit immediate messages by setting
their receive state to receive only deferred messages (see MGSET$ with
a key of K$DEFR).

Usage

DCL RMSGD$ ENTRY (CHAR<*), FIXED BIN, FIXED BIN, CHAR(*), FIXED BIN,
FIXED BIN, CHAR(*), FIXED BIN);

CALL RMSGDS (from_name, f rom_name_len, from_num, system_name,
system_jnarae_len, t ime_sen t , t e x t , t e x t _ l e n) ;

Parameters

from_name

OUTPUT. The user name of the sender.

from_name_len

INPUT. The maximum length of from__name in characters.

from_num

OUTPUT. The sender's user number.

system_name

OUTPUT. The name of the system from which the message was sent.

system_name_len

INPUT. The maximum length of system_name in characters.

time_sent

OUTPUT. The time, in minutes past midnight, at which the message
was sent. If no message is returned, time_sent is set to -1.

9-7 First Edition

SUBROUTINES, VOLUME III RMSGD$

text

OUTPUT. The text of the message.

text_len

INPUT. The maximum length of text.

Loading and Linking Information

V-mode and i-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 9-8

MESSAGE FACILITY

SMSG$

Purpose

SMSG$ sends a message. Messages may either be sent immediately or
deferred.

Usage

DCL SMSG$ ENTRY (FIXED BIN, CHAR(*), FIXED BIN, FIXED BIN, CHAR(*),
FIXED BIN, CHAR(*), FIXED BIN, (258) FIXED BIN);

CALL SMSG$ (key, to_name, to_name_len, to_user_num,
to_system_name, to_system_len, text, text_len,
error_vector);

Parameters

key

INPUT. Specifies the type of message, immediate or deferred.

0 Deferred message. Messages are buffered and
delivered at the receiver's convenience.

1 Immediate message. Messages are delivered
immediately when sent.

to_name

INPUT. The user name of the user to whom the message is to be
sent. If to_jiame is nonblank, the message is sent to all users
logged in under that name. If to—name is blank, the message is
sent by to__user_num, and to_jtame is ignored.

to_name_len

INPUT. The length of to_name in characters.

to_user_nura

INPUT. The user number of the user to whom the message is sent.
If to_user_num is positive, to_name is ignored. If to_user_num is
zero and to_name is blank, the message is sent to the operator.

9-9 First Edition

SUBROUTINES, VOLUME III SMSG$

to_system_name

INPUT. The name of the node to which the message is to be sent.
If the target system is local (indicated by to_system_len being
zero), to_system_name is ignored.

to_system_len

INPUT. The length of to_system_name in characters. If
to_system_len is zero, the local system is assumed.

text

INPUT. The text of the message. Messages may be up to 80
characters in length, and either blank-padded or terminated with a
newline. Only printable characters and the bell character are
printed by the operating system.

text_len

INPUT. The length of text in characters.

error_vector

INPUT/OUTPUT. An array that reports the success or failure of the
call. Its size can range from 4 through 258. Its elements have
the following meanings:

error_vector(1) The standard error code status returned by
the subroutine.

E$NRCV Operation aborted because send
does not have receive enabled.

E$UADR Unknown addressee.
E$UDEF Receiver not receiving.
E$PRTL Operation partially blocked.
E$NSUC Operation failed.
0 Operation succeeded.

First Edition 9-10

SMSG$ MESSAGE FACILITY

error_vector(2) Three less than the total number of
elements in error_vector. Normally set to
the number of configured users (256)
Provided by the user.

Note

This is both an input and output parameter. On input,
if error_vector(2) is set to less than the number of
users configured (KUSR), only that many elements will
be set from error_vector(3) on. If error_vector(2) is
greater than KUSR/ it will be set to KUSR. Thus, if
you are not interested in the information, this large
buffer need not be reserved.

error_vector(3) An overall network error code/returned by
the subroutine.

XS$CLR Connect cleared.
XS$BPM Unknown node address.
XS$DWN Node not responding.

error_vector(4-258) An optional status vector whose length is
the value of error_vector (2). If
supplied, each element is a status code
returned by the subroutine, indicating
success or failure to send a message to
user number n - 3, where n is the index
into error_vector. For example,
error__vector (10) is the status for user
number 7.

E$UBSY User busy, please wait.
E$UNRV User not receiving now.

9-11 First Edition

SUBROUTINES, VOLUME III SMSG$

Discussion

Immediate messages are delivered to the recipient at the time the
message is sent. Deferred messages are held in a system buffer until
the receiver requests them. (Deferred messages are also delivered to a
user automatically after each PRIMOS command completes execution.)
Messages may be sent to other processes by addressing them to either
their user numbers or their user names. If user name is used, all
users with that name will receive the message.

A noninteractive (phantom or batch) process does not have messages
delivered at command level. Consequently the "immediate" option is not
available. The process can receive messages using RMSGD$.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 9-12

10
Superseded Routines

This chapter lists routines considered obsolete or superseded, which
Prime continues to support.

0*\

10-1 First Edition

SUBROUTINES, VOLUME III

SUPERSEDED ROUTINES /«%

This section describes the following subroutines:

Routine Function

DISPLY Updates sense light settings.

ERRSET Sets ERRVEC (a system error vector).

GETERR Returns ERRVEC contents.

OVERFL Checks if an overflow condition has occurred.

PHANTS Starts a phantom process.

PRERR Prints an error message.

SLITE Sets the sense light on or off.

SLITET Tests sense light settings.

SSWTCH Tests sense switch settings.

TEXTO$ Checks filename for valid format.

UPDATE Updates current UFD (PRIMOS II only).

First Edition 10-2

SUPERSEDED ROUTINES

DISPLY

Purpose

DISPLY updates the sense light settings according to argument Al. The
bit values of Al (1 = on, 0 = off) correspond to switch/light settings
that are displayed on the computer control panel.

Usage

CALL DISPLY <A1)

Discussion

DISPLY is of use only on Prime computers that have lights on the
control panel. Newer Prime computer models have no lights.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

10-3 First Edition

SUBROUTINES, VOLUME I I I

ERRSET

Purpose

ERRSET sets ERRVEC, a system vector, then takes an alternate return or
prints the message stored in ERRVEC and returns control to the system.

Usage

CALL ERRSET (altval, altrtn)

CALL ERRSET (altval, altrtn, messag, num)

CALL ERRSET (altval, altrtn, name, messag, num)

In Form 1, altval must have value 100000 octal and altrtn specifies
where control is to pass. If altrtn is 0, the message stored in ERRVEC
is printed and control returns to the system.

Forms 2 and 3 are similar; therefore, the arguments are described
collectively as follows:

altval

altrtn

name

messag

num

A two-halfword array that contains an error code
that replaces ERRVEC(l) and ERRVEC(2). altval(1)
must not be equal to 100000 octal.

A FORTRAN label preceded by a dollar sign. If
altrtn is nonzero, control goes to altrtn. If
altrtn is 0, the message stored in ERRVEC is printed
and control returns to PRIMOS.

The name of a three-halfword array containing a six-
letter word. This name replaces ERRVEC(3),
ERRVEC(4), and ERRVEC(5). If name is not an
argument in the call, ERRVEC(3) is set to 0.

An array of characters stored two per halfword. A
pointer to this messag is placed in ERRVEC(7).

The number of characters in messag.
num replaces ERRVEC(8).

The value of

Discussion

Refer to the description of PRERR, later in this chapter, for the
contents of ERRVEC.

First Edition 10-4

ERRSET SUPERSEDED ROUTINES

If a message is to be printed, first, six characters starting at
ERRVEC(3) are printed at the terminal. Then the operating system
checks to determine the number of characters to be printed. This
information is contained in ERRVEC{8). The message to be printed is
pointed to by ERRVEC(7). The operating system only prints the number
of characters from the message (pointed to by ERRVEC(7)) that are
indicated in ERRVEC(8). If ERRVEC(3) is 0, only the message pointed to
by ERRVEC(7) is printed. The message stored in ERRVEC may also be
printed by the PRERR command or the PRERR subroutine. The contents of
ERRVEC may be obtained by calling subroutine GETERR.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

10-5 First Edition

SUBROUTINES, VOLUME III

GETERR

Purpose

A user obtains ERRVEC contents through a call to GETERR.

Usage

CALL GETERR (xervec, n)

Discussion

GETERR moves n halfwords from ERRVEC into xervec.

On an Alternate Return

ERRVEC(1) Error code.
ERRVEC(2) Alternate value.

On a Normal Return

PRWFIL:
ERRVEC(3) Record number.
ERRVEC(4) Word number.

SEARCH:
ERRVEC(2) File type.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 10-6

SUPERSEDED ROUTINES

OVERFL

Purpose

Argument Al in location AC5 is given a value of 1 if entry into F$ER
was made; otherwise it is set to 2. F$ER is left in the no error
condition. OVERFL is called to check if an overflow condition has
occurred.

Usage

CALL OVERFL (Al)

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: No special action.

10-7 First Edition

SUBROUTINES, VOLUME III

PHANT$

Purpose

PHANT$ starts a phantom user. This subroutine may be used only for
non-CPL phantoms. It has been replaced with PHNTM$.

Usage

CALL PHANTS (filnam, namlen, funit, user, code)

filnam

namlen

funit

user

code

Name of command input file to be run by the phantom
(integer array).

Length of characters of filnam (16-bit integer).

File unit on which to open filnam. If funit is 0,
unit 6 will be used (16-bit integer).

A variable returned as the user number of the
phantom (16-bit integer).

The return code (16-bit integer). If it is 0, the
phantom was initiated successfully. If code is
E$NPHA, no phantoms were available. Other values of
code are file system error indications.

/^\

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries

R-mode: No special action.

Load NPFTNLB.

First Edition 10-8

SUPERSEDED ROUTINES

PRERR

Purpose

PRERR prints an error message on the user's terminal,

Usage

CALL PRERR

Example

A user wants to retain control on a request to open a unit for reading
if the name was not found by SEARCH. To accomplish this, the program
calls SEARCH and gets an alternate return. It then calls to GETERR and
determines if an error occurred other than NAME NOT FOUND. To print
the error message while maintaining program control, the user calls
PRERR.

Discussion

ERRVEC consists of eight halfwords; their contents are as follows:

Word

ERRVEC(1)

ERRVEC(2)

ERRVEC(3)
ERRVEC(4)
ERRVEC(5)
ERRVEC(6)

ERRVEC(7)

Content

Code

Value

X X
X X
X X
X X

Pointer to
message

Remarks

Indicates origin of error and
nature of error.

On alternate return, this is
the value of the A-register.
On normal return, this may have
special meaning (refer to
PRWFIL and EARCH error codes
below).

ERRVEC(3), ERRVEC(4), and
ERRVEC(5) contain a
six-character filename of the
routine that caused the error.
(ERRVEC(6) is available for
expansion of names.)

For PRIMOS supervisor use.

10-9 First Edition

SUBROUTINES, VOLUME III PRERR

Word

ERRVEC(8)

Content

Message
length

Remarks

For PRIMOS supervisor use.

PRWFIL Error Codes

Code

PD

PE

PG

Content

UNIT NOT OPEN

PRWFIL EOF
(End of File)

PRWFIL BOF
(Beginning of
File)

Remarks

Number of halfwords left
(Information is in ERRVEC(2))

Number of halfwords left
(Information is in ERRVEC(2))

PRWFIL Normal Return

ERRVEC(3)

ERRVEC(4)

Record number.

Word number.

PRWFIL Read-Convenient

ERRVEC(2) Number of halfwords read.

SEARCH Error Codes

ERRVEC(l) Code, with one of the following values

Code Remarks

SA SEARCH, BAD PARAMETER.

SD UNIT NOT OPEN (truncate)

SD UNIT OPEN ON DELETE.

SH <Filename> NOT FOUND.

First Edition 10-10

PRERR SUPERSEDED ROUTINES

Code Remarks

SI

SK

SL

SQ

DJ

UNIT IN USE.

UFD FULL.

NO UFD ATTACHED

SEG-DIR-ER.

DISK FULL.

SEARCH Normal Return

ERRVEC (2)

Type

0

1

2

3

4

Type, with one of the fo!

Remarks

File is SAM.

File is DAM.

Segment directory is SAM

Segment directory is DAM

UFD is SAM.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

10-11 First Edition

SUBROUTINES, VOLUME I I I

SLITE

Purpose

Sets the sense light specified in argument Al on or sets all sense
lights off. If Al = 0, all sense lights are reset off.

Usage

CALL SLITE (Al)
CALL SLITE (0)

Discussion

SLITE is of use only on Prime computers that have lights on the control
panel. Newer Prime computer models have no lights.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 10-12

SUPERSEDED ROUTINES

SLITET

Purpose

SLITET tests the setting of a sense light specified by the argument Al.
The result of this test (1 = on, 2 = off) is in the location specified
by the argument R.

Usage

CALL SLITET (A1,R)

Discussion

SLITET is of use only on Prime computers that have lights on the
control panel. Newer Prime computer models have no lights.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

10-13 First Edition

SUBROUTINES, VOLUME I I I

SSWTCH

Purpose

SSWTCH tests the setting of a sense switch specified by the argument
Al. The result of this test (1 = set, 2 = reset) is stored in the
location specified in argument R.

Usage

CALL SSWTCH <A1,R)

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 10-14

SUPERSEDED ROUTINES

TEXTO$

Purpose

TEXTOS checks a filename for valid format.
replaced with FNCHK$.

This subroutine has been

Usage

CALL TEXTO$ (filnam, namlen, trulen, textok)

filnam

namlen

trulen

An integer array containing the filename to be
checked.

The length of filnam in characters (INTEGER*2).

An (INTEGER*2) set to the true number of characters
in filnam. trulen is valid only if textok is
.TRUE..

trulen is the number of characters in filnam
preceding the first blank. If there are no blanks,
trulen is equal to namlen. See SRCH$$ for filename
construction rules.

textok A LOGICAL variable set to .TRUE. if filnam is a
valid filename, otherwise set to .FALSE..

Names longer
message.

than

Caution

32 characters are truncated with no warning

Example

To read a name from the terminal, check for validity, and set trulen to
the actual name length:

CALL I$AA12 (0, BUFFER, 80, $999)
CALL TEXTO$ (BUFFER, 32, TRULEN, OK) /* SET TRULEN
IF (.NOT. OK) GOTO <bad-name>

10-15 First Edition

SUBROUTINES, VOLUME III TEXTO$

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 10-16

SUPERSEDED ROUTINES

UPDATE

Purpose

Under PRIMOS II, this subroutine updates the current UFD.

Usage

CALL UPDATE (key, 0)

key Value must be 1 to update current UFD, send DSKRAT
buffers to disk, if necessary, and undefine DSKRAT
in memory (INTEGER*2).

Discussion

This call is effective only under PRIMOS II. Under PRIMOS it has no
effect.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

10-17 First Edition

^

APPENDIXES

&\

f*\

A
Standard Conditions

The condition mechanism is described in Chapter 7. That description
tells you how to signal conditions in general and how to handle them.
It also defines the data structures associated with conditions.

This Appendix describes conditions raised by the operating system under
various circumstances. These conditions are raised by PRIMOS or its
associated utility software. Some other conditions not listed here are
used by Prime software to communicate between different subsystems or
different parts of a subsystem; normally the program is not affected
by these conditions. If an ANY$ on-unit catches a condition not
included in this Appendix, the condition should be ignored by returning
from the on-unit.

In the list below, the meaning of each condition is given, followed by
a description of the information available in the condition frame
header structure produced by that condition.

The standard PL/I information structure is:

del 1 info based,
2 file_ptr ptr options (short), /* PL/I file control block */
2 info_struct_len fixed bin, /* Length in halfwords of */

/* structure */
2 oncode_value fixed bin, /* Unique error code */
2 ret_addr ptr options (short); /* Points to statement */

/* causing error. */

The data structures used by the condition mechanism are discussed in
Chapter 7 under DATA STRUCTURE FORMATS.

A-l First Edition

SUBROUTINES, VOLUME III

In the descriptions below, software means that the machine state frame
pointed to by cfh.ms_ptr is a condition frame header, and hardware
means that this frame is a fault frame header. The notations cfh. and
ffh. below refer to the condition frame header or fault frame header
that is pointed to by cfh.ms_ptr or ffh.ms_ptr. The information
structures referred to below are pointed to by cfh.info_ptr.

Unless otherwise noted below, the system default on-unit for each
condition prints an appropriate diagnostic message on the user's
terminal, terminates program execution, and returns to PRIMOS command
level.

ACCESS_VIOLATION$

(hardware, returnable)

The process has attempted to perform a CPU instruction that has
violated the access control rules of the processor. No information is
readily available to differentiate between write violation, read
violation, execute violation, and gate violation.

ffh.fault_type Value M4'b3.

ffh.fault_addr Contains the virtual address whose access is
improper.

ffh.ret_pb Points to the instruction causing the violation.

No information structure is available.

ALARM$

(software, returnable)

This condition is raised when the elapsed time watchdog timer expires.
See the discussion of LIMIT$ in Chapter 8 for information on setting
the elapsed time watchdog timer.

No information structure is available.

The default on-unit simply returns. This means that the expiration of
the timer is ignored.

First Edition A-2

STANDARD CONDITIONS

ANY$

(pseudo-condition)

An activation's on-unit for ANY$ is invoked if that activation does not
have a specific on-unit for the condition that was raised. The
condition frame header for the condition ANY$ describes the original
condition directly; there is no separate condition frame header for
the condition ANY$ unless ANY$ was explicitly raised by a call to
SIGNL$ (not a recommended practice).

AREA

(software, not returnable)

This condition is raised when a storage area has been damaged, or when
the target area for an attempted copy from one area to another was too
small. Generally raised by PL1 only.

ARITH$

(hardware, returnable)

The process encountered an arithmetic exception fault.

ffh.fault_type Value '50'b3.

ffh.fault_code Hardware-defined exception code that partially
identifies the cause of the fault.

ffh.ret_pb Points to the next instruction to be executed upon
return. There is no way in general to obtain a
pointer to the faulting instruction.

No information structure is available.

The standard default handler for this condition resignals the
appropriate arithmetic condition (SIZE, FIXEDOVERFLOW, etc.) with the
appropriate information structure. This condition is raised by fixed
overflow or underflow, or zero divide.

A-3 First Edition

SUBROUTINES, VOLUME III

BAD_NONLOCAL_GOTO$

(software, not returnable)

The nonlocal GOTO processor was asked to transfer control to a label
whose display (stack) pointer is invalid, or whose target activation
has already been cleaned up. There is also a possibility that the
user's stack may have been overwritten.

Information Structure:

DCL 1 info based,
2 target_label label,
2 ptr_to_nlg_call ptr,
2 caller_sb ptr;

info.target_label Label to which the nonlocal GOTO was
attempted.

info.ptr_to_nlg_call Pointer to the call to PL1$NL that requested
this nonlocal GOTO.

info.caller_sb Pointer to the activation (stack frame)
requesting this nonlocal GOTO.

BAD_PASSWORD$

(software, not returnable)

This condition is raised by the procedures that change the user's
attach point. It is caused by attempting to attach with an incorrect
password to a directory requiring a password. This condition is
signalled nonreturnable in order to increase the work function of
machine-aided password penetration.

No information structure is available.

CLEANUP$

(software, returnable)

The nonlocal GOTO processor is in the process of invoking on-units for
the condition CLEANUP$ in each activation on the stack, prior to
actually unwinding the stack. The on-unit for this condition should
return, unless it encounters a fatal error. Calls to CNSIG$ from a
CLEANUP$ on-unit have no effect.

No information structure is available.

First Edition A-4

STANDARD CONDITIONS

COMl_EOF$

(software/ returnable)

End of file occurred on the command input file.

The default on-unit prints a diagnostic message and returns to the
point of interrupt.

CONVERSION

(software, returnable)

This condition is raised when the source data for a data-type
conversion contains one or more characters that are invalid for the
target type. For example, nonnumeric characters appear in a character
string that is to be converted to integer.

Information Structure: Standard PL/I information structure.

CPU_TIMER$

(software, returnable)

This condition is raised when the CPU watchdog timer expires. See the
discussion of LIMIT$ in Chapter 8 for information on setting the CPU
watchdog timer.

No information structure is available.

The default on-unit simply returns. This means that the expiration of
the timer is ignored.

ENDFILE (file)

(software, returnable)

This condition is raised when an end of file is encountered while
reading a PL/I file with PL/I I/O statements. The value of the
ONFILE() built-in function identifies the file involved.

The standard PL/I condition information structure is provided. The
value of info.oncode_value is undefined, and info.file_ptr identifies
the file on which end of file occurred.

The default on-unit for this condition prints a diagnostic and then
resignals the ERROR condition with an info.oncode_value of 1044.

A-5 First Edition

SUBROUTINES, VOLUME III

ENDPAGE (file)

(software, returnable)

This condition is raised when end of page is encountered while writing

a PL/I file using PL/I I/O statements. The value of the ONFILE()
built-in function identifies the file on which the end of page was
encountered.

The standard PL/I condition information structure is provided. The
value of info.oncode__value is undefined; info.file_ptr identifies the
file in question.

The default on-unit for this condition performs a PUT SKIP on the file,
and then returns.

ERROR

(software, varies)

This condition is a catch-all error condition defined in PL/I. The
default on-unit for most PL/I-defined conditions (such as KEY) results
in the ERROR condition being resignalled. Hence, the programmer has
the choice of handling a more- or less-specific case of the condition.

ERRRTN$

(software, not returnable)

A non-ring-0 call to the ring-0 entry ERRRTN was made, as the result of
an ERRRTN SVC or a call to ERRPR$ with certain values of the key.

No information structure is available.

The default on-unit for
hence, this condition
static-mode program.

this condition simulates a call to EXIT;
should be signalled only while executing in a

First Edition A-6

STANDARD CONDITIONS

EXIT$

(software, returnable)

The process has made a call to the EXIT primitive, via a direct call or
an EXIT SVC. This condition should not be handled by user programs,
since it is used by certain PRIMOS software to monitor the execution of
static-mode programs.

No information structure is available.

The default on-unit for this condition simply returns.

FINISH

(software, returnable)

This condition is signalled before process termination, usually after
files are closed. It closes any open files and returns to the point at
which the condition was signalled. This condition is not signalled if
the process is prematurely exhausted or destroyed. Available through
PL/I. In PL/I, a STOP statement causes FINISH to be raised after files
are closed. In this case, FINISH also raises the STOP$ condition.

The default on-unit simply returns.

FIXEDOVERFLOW

(hardware, not returnable)

This condition is detected by hardware and is raised when a fixed-point
decimal or binary result is too large to fit into the hardware register
or decimal field.

The standard PL/I condition information structure is provided.

A-7 First Edition

SUBROUTINES, VOLUME III

HEAP_ERROR$

(software, non-returnable)

This condition is raised by user-class storage allocation and free
routines to indicate that the memory structures defining the user's
free memory area have become corrupted. See the discussion of STR$AU
and STR$FU in Chapter 4.

No information structure is available.

The default on-unit prints a message informing the user about the
corrupted storage area.

ILLEGAL_INST$

(hardware, returnable)

The process attempted to execute an illegal instruction.

ffh.fault_type Value M0'b3.

ffh.ret_pb Points at the faulting instruction.

No information structure is available.

1LLEGAL_0NUNIT_RETURN$

(software, not returnable)

An on-unit for a condition attempted to return, but returning was
disallowed by the procedure that raised the condition.

Information Structure: The standard-format condition frame header that
describes the condition whose on-unit illegally attempted to return.

First Edition A-8

STANDARD CONDITIONS

^ ILLEGAL_SEGNO$

(hardware, returnable)

The process referenced a virtual address whose segment number is out of
bounds.

ffh.fault_type Value '60'b3.

ffh.ret_pb Points to the faulting instruction.

ffh.fault_addr The virtual address that is in error.

No information structure is available.

K E Y (file)

(software, returnable)

The KEY condition is raised when reading or writing a keyed PL/I file
with PL/I I/O statements, and the supplied key does not exist (READ) or
already exists (WRITE). The value of the ONFILE() built-in function
identifies the file in question; the value of the ONKEY() built-in
function contains the key in error.

Information Structure: The standard PL/I condition information
structure. The value of info.oncode_value is undefined; the value of
info.file_ptr identifies the file in question.

The default on-unit prints a diagnostic and resignals the ERROR
condition, with an info.oncode_value of 1045.

A-9 First Edition

SUBROUTINES, VOLUME III

L1NKAGE_FAULT$

(hardware, returnable)

The process referenced through an indirect pointer (IP) that is a valid
unsnapped dynamic link, but the desired entrypoint could not be found
in any of the dynamic link tables.

ffh.fault_type Value '64'b3.

ffh.fault_addr Points to the faulting indirect pointer.

ffh.ret_pb Points to the faulting instruction.

Information Structure:

DCL 1 info based,
2 entry_name char(32) var;

info.entry_name Name of the entry point that could not be found.

LISTENER_ORDER$

(software, varies)

This condition is used internally by the command loop to manage its
recursion. Users should never make on-units for this condition, and
user default on-units (ANY$) should always pass this condition on by
returning.

First Edition A-10

STANDARD CONDITIONS

#^ LOGOUT$

(software, returnable)

This condition is raised when a user or the operator is trying to force
log out a process.

Information Structure:

DCL 1 logout_info,
2 reason fixed; /* reason for logout;

codes available in PRIMOS source */

The default on-unit logs out the process. When LOGOUT$ is signalled,
the intercepting process has between one and two minutes to do its
cleanup before being force-logged out.

NAME

(software, returnable)

This condition occurs only during data-directed input. It occurs when
stream assignment in a GET statement is read whose variable does not
match the variable name in the data list. After execution of the
on-unit, the process returns to the data-directed input as if the
invalid input were processed. Generally raised by PL/I only.

A-ll First Edition

SUBROUTINES, VOLUME III

NO_AVA!L_SEGS$ ^%

(hardware, returnable)

The process referenced a virtual address that refers to a segment that
has not yet been created. At the moment, the system has no free page
tables to assign to the segment. If the on-unit for this condition
returns, the reference is retried. If, in the meantime, this or some
other process deleted a segment, the reference now has the possibility
for successful completion.

ffh.fault_type Value '60'b3.

ffh.ret_pb Points to the faulting instruction.

ffh.fault_addr Virtual address that is causing the attempted
segment creation.

No information structure is available.

NONLOCAL_GOTO$

(software, returnable)

This condition is signalled by the PL/I nonlocal GOTO processor PL1$NL
just prior to setting up the stack unwind (and hence prior to the
invocation of any CLEANUP$ on-units). This condition exists to enable
certain overseer software (such as the debugger) to be informed that
the nonlocal GOTO is occurring. The default handler for this condition
simply returns. When a procedure handling this condition wishes to let
the nonlocal GOTO occur, it should simply return (without
continue-to-signal set).

Information Structure: Same as for the BAD_NONLOCAL_GOTO$ condition.

First Edition A-12

STANDARD CONDITIONS

f NPX_SLAVE_SIGNALED$

(software/ not returnable)

A condition was raised in your slave process running on some remote
system. The following message is printed:

Condition signalled in NPX slave on nodename
ERROR: Condition "condition name" raised at segment no./

halfword no.

Information Structure:

DCL 1 npx_slave_info,
2 node fixed, /* npx node number on which

slave is running */
2 orig_condition char (32) var, /* condition

raised in slave */
2 orig_info_data (129) fixed; /* info

structure from slave */

When the slave detects a signalled condition, it transmits to the
master, which signals the condition NPX_SLAVE_SIGNALED$. Its result is
the printout of the message shown above. The slave transmits to the
master all types of conditions signalled except the following:

EXIT$

FINISH

LINKAGE_FAULT$

NONLOCAL_GOTO$

REENTER$

STRINGSIZE

These conditions are handled differently by the slave's on-unit. They
are returned without transmitting to the master; that is, the master
side will not get the condition NPX_SLAVE_SIGNALED$.

A-13 First Edition

SUBROUTINES, VOLUME III

NULL_POINTER$ ^

(hardware, returnable)

The process referenced through an indirect pointer or base register
whose segment number is '7777'b3. This is considered to be a reference
through a null pointer, although user software should always employ the
single value '7777/0 for the null pointer.

ffh.fault_type Value '60'b3.

ffh.ret_pb Points to the faulting instruction.

ffh.fault_addr Null pointer through which a reference was made.

No information structure is available.

The default on-unit for this condition resignals the ERROR condition
with the appropriate information structure.

OUT_OF_BOUNDS$

(hardware, returnable)

The process referenced a page of some segment that cannot be referenced
in any ring (that is, no main memory or backing storage is allocated
for that page, and allocation is not permitted).

ffh.fault_type Value '10'b3.

ffh.ret_pb Points at the faulting instruction.

ffh.fault_addr The offending virtual address.

No information structure is available.

First Edition A-14

STANDARD CONDITIONS

OVERFLOW

(hardware, not returnable)

This condition is raised when the result of a floating-point binary
calculation is too large for representation. It may occur within a
register or as a store exception. The default on-unit prints a message
and signals the ERROR condition. User on-units may not return to the
point of interrupt. However, if the default on-unit is invoked, and if
the user types START, the register or memory location affected is set
to the largest possible single-precision floating-point number, and
calculation continues.

PAGE_FAULT_ERR$

(hardware, returnable)

The process encountered a page fault referencing a valid virtual
address, but, due to a disk error, the page control mechanism was not
able to load the page into main memory. If the on-unit for this
condition returns, the reference is retried, with some likelihood that
the disk read will succeed.

^ ffh.fault_type Value '10'b3.

ffh.ret_pb Points at the faulting instruction.

ffh.fault_addr Virtual address, the page for which cannot be
retrieved.

No information structure is available.

PAUSE$

(software, returnable)

The process executed a PAUSE statement in a FORTRAN program. This
condition should not be handled by user programs since it is used by
Prime software to ensure the proper operation of the FORTRAN PAUSE
statement.

No information structure is available.

The default on-unit for this condition prints no diagnostic, but calls
a new command level.

A-15 First Edition

SUBROUTINES, VOLUME I I I

PH_LOGO$ ^

(software, returnable)

This condition is raised when a phantom that you spawned is logging
out.

No information structure is directly available. Use the subroutine
LON$R, described in Chapter 5, to obtain information about the phantom.

POINTER_FAULT$

(hardware, returnable)

This is the process referenced through an indirect pointer (IP) whose
fault bit is on, but that pointer is not a valid unsnapped dynamic
link. This error condition is frequently caused by making a subroutine
call with too few arguments. The condition is raised when the called
subroutine attempts to access one of its arguments through a faulted
pointer.

ffh.fault_type Value '64'b3.

ffh.fault_addr Points to the faulting indirect pointer.

ffh.ret_pb Points to the faulting instruction.

No information structure is available.

First Edition A-16

STANDARD CONDITIONS

QUIT$

(hardware, software, returnable)

The user actuated QUIT (BREAK key or CONTROL-P) on the terminal.

If this is a hardware signal, then ffh.fault_type has the value '04'b3.

cfh.ret_pb or ffh.ret_pb points to the next instruction to be executed
in the faulting procedure.

No information structure is available.

The default on-unit flushes the input and output buffers of the user's
terminal, prints the message "QUIT." on the terminal, and calls a new
command level.

RECORD

(software, returnable)

This condition is raised when record size is different from the
variable defined in the PL/I source. Generally raised by PL/I only.

A-17 First Edition

SUBROUTINES, VOLUME I I I

REENTER$

This condition is raised by the PRIMOS REENTER (REN) command and
reenters a subsystem that has been temporarily suspended due to another
condition (such as a QUIT$ signal).

If the interrupted operation can be aborted, the subsystem's on-unit
can accomplish this by performing a nonlocal GOTO back into the
subsystem at the appropriate point.

If the QUIT$ occurred during an operation that must be completed, the
on-unit should set the info.start_sw to 'l'b, record the QUIT$ request
within the subsystem, and return. The REN command then executes a
START command which restarts the subsystem at the point of interrupt.
When the operation is complete, the subsystem should then honor the
recorded QUIT$ request.

The default on-unit returns without setting the info.start_sw• The REN
command then prints a diagnostic and returns since it assumes the stack
held no subsystem able to accept reentry.

Information Structure:

DCL 1 info based,
2 start_sw bit(l) aligned;

RESTRICTED_INST$

(hardware, returnable)

The process attempted to execute an instruction whose use is restricted
to ring-0 procedures. Certain of these instructions (in the I/O class)
can be simulated by ring 0. An instruction that causes this condition
to be raised could not be simulated by this mechanism.

ffh.fault_type Value #00'b3.

ffh.ret-pb Points to the faulting instruction.

First Edition A-18

STANDARD CONDITIONS

R0_ERR$

(software, returnable)

A ring-0 call to ERRPR$ or ERRRTN was made, as the result of a detected
fatal error condition.

No information structure is available.

The default on-unit for this condition prints no diagnostic, but calls
a new command level.

SIZE

(software, not returnable)

This condition is raised when a program tries to do an arithmetic
conversion and the value is too large to fit into the target data type.
It can occur when converting a floating-point number, a decimal
integer, or a character string.

The standard PL/I condition information structure is provided.

£* STACK_OVF$

(hardware, returnable)

The process overflowed one of its stack segments, but the condition
mechanism was able to locate a stack on which to raise this condition.

ffh.fault_type Value '54'b3.

ffh.fault_addr The last stack segment in the chain of stack
segments of the stack that overflowed. It is this
segment that contains the zero extension pointer
that caused the stack overflow fault.

ffh.ret_pb Points to the faulting instruction.

No information structure is available.

A-19 First Edition

SUBROUTINES, VOLUME III

STOP$

(software, not returnable)

The process executed a STOP statement in a higher-level-language
program. This condition should not be handled by user programs, as it
is used by Prime software to ensure the proper operation of the STOP
statement in the various languages.

No information structure is available.

The default on-unit for this condition performs a nonlocal GOTO back to
the command processor that invoked the procedure (or one of the dynamic
descendants) that executed the STOP statement.

STORAGE

(software, returnable)

The STORAGE condition indicates there is insufficient memory to satisfy
a request to allocate dynamic memory. In PL1G, the condition can be
raised either through the ALLOCATE statement or by the compiler making
its own call.

The standard PL/I condition information structure is provided.

STRINGRANGE

(software, returnable)

One argument of the PL/I SUBSTR function is out of range of the string,

First Edition A-20

STANDARD CONDITIONS

STR1NGSIZE

(software, returnable)

The target of a string assignment is too small to contain the value,
The default on-unit simply returns.

Information Structure; The standard PL/I condition information
structure is provided.

SUBSCRIPTRANGE

(software,returnable)

A subscript is out of range.

Information Structure: Standard PL/I information structure.

SUBSYS_ERR$

The subroutine SS$ERR raises this condition when it is called by a
subsystem that is not interactive (that is, one run by a CPL or command
file). The default on-unit for SUBSYS_ERR$ aborts execution of the
subsystem and forces the severity code to have a positive sign. Any
command input file" is aborted.

A-21 First Edition

SUBROUTINES, VOLUME I I I

SVC_INST$

(hardware, returnable)

The process executed an SVC instruction, but the system was not able to
perform the operation. If the user is in "SVC virtual" mode, all SVC
instructions result in this condition being raised.

ffh.fault_type Value '14'b3.

ffh.ret_pb Points to the location following the SVC
instruction.

Information Structure:

DCL 1 info based,

2 reason fixed bin;

info.reason values are:

1 Bad SVC operation code or bad argument(s).

2 Alternate return needed but was 0.

3 Virtual SVC handling is in effect in this process.
For the case of virtual SVCs only (info.reason code of 3), the
static-mode default on-unit simulates the Prime 300 fault handling for
the SVC fault, if the appropriate halfword of segment '4000 is nonzero.
If this halfword is 0 or if there is no static-mode program in
execution, the standard default handler prints a diagnostic and calls a
new command level. (See the System Architecture Reference Guide for
the exact location.)

SYSTEM_STORAGE$

This condition is raised when one of the routines managing
process-class dynamic memory detects an error. These routines are
described in Chapter 4.

The default on-unit initializes the command environment.

First Edition A-22

STANDARD CONDITIONS

f^ TRANSMIT

(software, returnable)

This condition occurs when data cannot be transmitted reliably between
a data set and PL/I storage.

Ull$

(hardware, returnable)

The process executed an unrecognized instruction that nevertheless
caused an unimplemented instruction fault, or else the system UII
handler detected an error in processing the valid UII.

The fault frame header that accompanies this condition is nonstandard
in that ffh.reqs is not valid. The registers at time of fault are
unavailable.

ffh.ret_pb Points to the next instruction to be executed in the
faulting procedure.

UNDEFINEDFILE (file)

(software, not returnable)

This condition is raised when an OPEN statement cannot associate an
input file with an existing PRIMOS file or device. The default on-unit
prints a message and signals the ERROR condition.

A-23 First Edition

SUBROUTINES, VOLUME III

UNDEFINED_GATE$ ^

(software, not returnable)

This condition is signalled when the process called an inner-ring gate
segment at an address within the initialized portion of the gate
segment, but there was no legal gate at that address. This error can
arise because gate segments are padded with illegal gate entries, from
the last valid gate entry to the next page boundary, and the program
has attempted to construct and use a pointer into the gate segment,
instead of using the dynamic linking mechanism.

No information structure is available.

UNDERFLOW

(hardware, returnable)

This condition is signalled when the result of the floating-point
binary or decimal calculation is too small for representation. The
default on-unit sets the floating-point accumulator to 0.OeO. If the
underflow occurred as a store exception, the affected portion of memory
is also set to O.OeO. The default on-unit returns and the calculation
proceeds, using the O.OeO value.

The standard PL/I condition information structure is provided.

WARMSTART$

(software, returnable)

This condition is raised for every process when the operator
successfully performs a warm start. The default on-unit prints the
following message and returns:

***** WARM START *****

No information structure is available.

First Edition A-24

STANDARD CONDITIONS

ZERODIVIDE

(hardware, not returnable)

This condition is signalled when a division by 0 (floating-point or
fixed-point) occurs. The default on-unit prints a message and signals
the ERROR condition. For compatibility with earlier versions of
PRIMOS, if the condition is the result of a floating-point operation,
the user may type START following the printing of the message. The
default on-unit then sets the register involved to the largest possible
single-precision floating-point value and proceeds with the
calculation.

The standard PL/I condition information structure is provided.

A-25 First Edition

B
Data Type

Equivalents

In order to call a subroutine from a program written in any Prime
language, you must declare the subroutine and its parameters in the
calling program. Therefore, you must translate the PL/I data types
expected by the subroutine into the equivalent data types in the
language of the calling program.

The table that follows shows the equivalent data types for the Prime
languages BASIC/VM, C, CBL, COBOL, FORTRAN IV, FORTRAN 77, Pascal, and
PL/I. The leftmost column lists the generic storage unit, which is
measured in bits, bytes, or halfwords for each data type. Each storage
unit matches the data types listed to the right on the same row.

Note

The term PL/I refers both to full PL/I and to PL/I Subset G
(PL/I-G).

If a subroutine parameter consists of a structure with elements
declared as BIT(n), it can be declared as an integer in the calling
program. See the section How to Set Bits in Arguments in Chapter 1.

B-l First Edition

SUBROUTINES, VOLUME III

Table B-l
Data Type Equivalents

o.

- 1

8
0)

2

z <

o u.

2
<

oc
o
u.

- I
o m o o

_l
ffi
o

o

h
CD

O

s 3

CD

CO

1
c

c
3

c

m

OC <
X o

"E"

x 9 < o

DC
HI

DC < =
I *
O

cc
UJ
o
HI F
2

coooo
0 0 . 0 . 0 -

wood
Q L O . I L

o

z

£=co

UJ
CC

1 -
o
a.

§1
COO
Q O L

m o

- i
<
2

Q O
UjUJ

x o
LL

CO

d.
5
O
O

.1= j2.o

a
_^z
£ >
cccr

O

O
z
cc
1 -
05

w

s o «

2

P
O

IN
TE

R

O
P

TI
O

N
S

(S

H
O

R
T)

•o o

oS! a: Si

to"
•a

C\li£

CC
111
1 -z
o
Q .

2

•a
o

fcE

1
•— <D "Si

S
ta

r- ex
te

nt

ar
ra

y

c
CO

O

<

j a raff

. S g t
2

First Edition B-2

DATA TYPE EQUIVALENTS

Table B-1 (continued)
Data Type Equivalents

D.

- 1
< O
0)

2E

z
< IE ^
f t ttN

o U.

z
<

cc
O
u.

-J
O m o o

_ l
m
o

o

S „

I1
ID

u

G
en

er
i

U
ni

t

IX
E

D
 B

IN

IX
E

D

B
IN

(1
5)

u_u_

T3
CD

fiF,« UJ 5K

O S

EUJ

CVICNJ

* « CC_I
U J <
(D O

IS
CM

* CCCC-J
U J U J <
C3C30
ujuj(5

sis

a. s o o

, ^1-

•̂CO

ooo-
On.

t r E
O 3
£ C
(0 <D

1 -

z

•2 5

5)

x m
UL

cc
UJ

a 111
H

z O
Z
o
_)

• "
* * cctr_i_i U J U J < <

o o o o LLJUJO Cr,

*
0C
111
CD
UJ
1 -
Z

• S-
'—'CO

O O Q .
O Q .

C O

<* *
1-
Z

coS-

• 25" 2?*^™
£oT
i--C0

^jcoo
o o a -
O Q -

ss.

LO
AT

B

IN

LO
AT

B

IN
(2

3)

LL- LL

_ J
<
til
CC

*
*

< <
UJUJ
CCDC

•* «
_ l _ l

UJUJ

oca:

T—

oL

o
o

•
(0
o "-

_ i
<
UJ

cc

m *~.
•S c

32
 b

its

(F
lo

at
 s

in
g

pr
ec

is
io

Oco
u.

- 1
< UJ
cc
CD

z
o
_ 1

00
*
<
UJ
CC

CD

*
<
UJ

cc

CM
OL

s o
o

CO
X I
3
O
•o

00
11

_ l

<
UJ

oc

0 > — s
J3 C

64
 b

its

(F
lo

at
 d

ou
l

pr
ec

is
io

CO
Y -

*
_ l <
UJ

oc

•n'c'

12
8

bi
ts

(F

lo
at

 q
ua

pr

ec
is

io

mm

"D
CO
c

—£®
oc?E
2 = g
o5 - - >

Q
UJ

z

m

z <
UJ
- 1

o o
OQ

cop"

II
m£.

a>
0>
CO

<f
s Q.
c
CO

c
3
o
<1>
c
<D
O
CD

r

F
<D
Q.
E
o
•*"' ^
£
o
c

cu

•o 3

o
a>
c
a>
<u
cu
rr
CO
a>
c

3
o
X)
3

CO
CD

o
— ©

b
3 O
> c
I—
CO

"R
m

O I
CO
CO

o
en
•o
(0
r»

o
II I
O
< u.
IT
HJ
H

I L Z
o> <
o s Z Q .

B-3 First Edition

c
File-system

Date Format

Some of the routines in this volume refer to "File-system Date Format"
(or FS-date). This is a 32-bit value that is used by the PRIMOS filing
system to record date and time information.

A date and time in File-system Date Format occupies 32 bits, so it may
be held in a fullword integer (FORTRAN INTEGER*4). The format is
designed so that times can be compared arithmetically with correct
results. For example, if datel and date2 are two 32-bit integers, and
datel is less than date2, then the time represented by datel is earlier
than the time represented by date2. (Integer comparison of two dates
does not work if they fall on opposite sides of 1 Jan 1964, because the
high order bit of year is the arithmetic sign of the integer. It
becomes a 1 on that date, changing the sign of the integer.)

The time is accurate to the nearest four seconds. The word quadsecond
has been invented to stand for a unit of time of four seconds. This
unit was chosen so that the time field will is positive. The routines
CVDQS, CVDTB, CVFDA, CVFDV, and CV$QSD, described in Chapter 6, are
provided to convert between File-system Date Format and other, more
convenient formats.

The date is encoded as three integers packed into the first IS bits, as
described in the following structure:

del 1 fs_date,
2 year bit(7),
2 month bit(4),
2 day bit(5),
2 quadseconds fixed bin(15);

C-l First Edition

SUBROUTINES, VOLUME III

year Year number, minus 1900. For example, 86 represents

the year 1986, and 117 represents the year 2017.

month Month, from 1 for January to 12 for December.

day Day of the month, from 1 to 31.
quadseconds Number of quadseconds (groups of four seconds)

elapsed since midnight of the date described by the
above three fields.

First Edition C-2

INDEXES

Index of Subroutines by Name

A$xy series
ABSW

AC$CAT

AC$CHG
AC$DFT

AC$LIK

AC$LST
AC$RVT

AC$SET
ALC$RA

ALOC$S
ALS$RA

APSFX$
ASCS$$

ASCS$$

ASCSRT
ASNLN$
ASSUR$

AT$

AT$ABS

AT$ANY

I
III

II

II
II

FORTRAN compiler addition functions.
Returns cold-start setting of ABBREV
switch.
Add an object's name to an access
category.
Modify an existing ACL on an object.
Set an object's ACL to that of its
parent directory.
Set an object's ACL like that of another II
object.
Obtain the contents of an object's ACL.
Convert an object from ACL protection
to password protection.
Set a specific ACL on an object.
Allocates space for EPF function
return information.
Allocates memory on the current stack.
Allocates space and sets value of
EPF function.
Append a specified suffix to a pathname
Sort or merge sorted files (multiple
file types and key types).(V-mode)
Sort or merge sorted files (multiple
file types and key types).(R-mode)
Synonym for ASCS$$. See above.
Assign AMLC line.
Checks process has given amount of
time slice left.
Set the attach point to a directory
specified by pathname.
Set the attach point to a specified
top-level directory and partition.
Set the attach point to a specified
top-level directory on any partition.

IV

C-7
2-3

2-3

2-5
2-7

2-9

II
II

II
III

III
III

II
IV

2-11
2-13

2-15
4-16

4-3
4-21

4-4
17-12

17-42

IV
III

II

II

II

8-21
2-17

3-3

3-6

3-8

SX-1 First Edition

SUBROUTINES, VOLUME III

AT$HOM

AT$LDEV

AT$OR

AT$REL

ATCH$$
ATTDEV

Set the attach point to the home
directory.
Set the attach point by top-level
directory and logical disk number.
Set the attach point to the login
directory.
Set the attach point relative to the
current directory.
Set the attach point to a specified UFD
Change a device assignment temporarily.

II

II

II

II

II
IV

3-10

3-11

3-13

3-15

A-2
3-6

BIN$SR
BNSRCH
BREAK$
BUBBLE

Perform binary search in ordered table. Ill 6-21
Binary search. IV 17-48
Inhibits or enables BREAK function. Ill 3-50
Bubble sort. IV 17-50

C$xy series
C$A01
C$M05
C$M10
C$M11

C$M13

C$P02
CI IN
C1IN$
C1NE$
CALAC$

CASE$A
CAT$DL
CE$BRD

CE$DPT

CH$FX1

CH$FX2

CH$HX2

CH$MOD
CH$OC2

CHG$PW
CKDYN$

CL$FNR

FORTRAN compiler conversion functions,
Control functions for user terminal.
Control functions for 9-track tape.
Control functions for 7-track tape.
Control functions for 7-track tape
(BCD).
Control functions for 9-track tape
(EBCDIC).
Control functions for paper tape.
Reads a character.
Reads a character.
Reads a character, suppressing echo.
Determine whether an object is acces­
sible for a given action.
Convert between upper- and lowercase.
Delete an access category.
Return caller7 s maximum command
environment breadth.
Return caller's maximum command
environment depth.
Convert string (decimal) to 16-bit
integer.
Convert string (decimal) to 32-bit
integer.
Convert string (hexadecimal) to
32-bit integer.
Change the open mode of an open file.
Convert string (octal) to 32-bit
integer.
Changes login validation password.
Determines if routine is dynamically
accessible.
Close a file by name and return a bit
string indicating closed units.

I
IV
IV
IV
IV

C-5
6-5
E-5
E-5
E-5

IV E-5

IV 6-12
III 3-5
III 3-7
III 3-9
II 2-17

IV 14-2
II 2-19
II 6-3

II 6-4

III 6-3

III 6-5

III 6-7

II 4-6
III 6-9

III 2-18
III 2-4

II 4-7

First Edition SX-2

INDEX BY NAME

CL$GET
CL$PIX

CLINEQ
CLNU$S
CLO$FN
CLO$FU

CLOS$A
CMADD
CMADJ
CMBN$S
CMCOF
CMCON
CMDET
CMDL$A
CMIDN
CMINV
CMLV$E
CMMLT
CMSCL
CMSUB
CMTRN
CNAM$$

CNIN$
CNSIG$
CNVA$A
CNVB$A
CO$GET

COM$AB

COMANL
COMB
COMI$$

COMLV$
COMO$$

CONTRL

CP$
CPUID$
CREA$$
CREPW$
CSTR$A
CSUB$A
CTIM$A
CV$DQS
CV$DTB

Reads a line.
Parse command line according to a
command line picture.
Solve linear equations (complex).
Close all sort units after SRTF$.
Close a file system object by pathname.
Close a file system object by file unit
number.
Close a file.
Matrix addition (complex).
Calculate adjoint matrix (complex).
Sort tables prepared by SETU$.
Calculate signed cofactor (complex).
Set constant matrix (complex).
Calculate matrix determinant (complex).
Parse a command line.
Set matrix to identity matrix (complex)
Calculate signed cofactor (complex).
Calls new command level after an error.
Matrix multiplication (complex).
Multiply matrix by scalar (complex).
Matrix subtraction (complex).
Calculate transpose matrix (complex).
Change the name of an object in the
current UFD.
Reads a specified number of characters.
Continues scan for on-units.
Convert ASCII number to binary.
Convert binary number to ASCII.
Returns information about command
output settings.
Expands a line using Abbreviations
preprocessor.
Reads a line into a PRIMOS buffer.
Generate matrix combinations.
Switches input between the terminal
and a file.
Calls a new command level.
Switches output between the terminal
and a file.
Perform device-independent control
functions (obsolete).
Invoke a command from a running program.
Returns model number of Prime computer.
Create a new sub-UFD in the current UFD.
Create a new password directory.
Compare two strings for equality.
Compare two substrings for equality.
Return CPU time since login.
Convert binary date to quadseconds.
Convert ASCII date to binary format.

Ill
II

IV
IV
II
II

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
III
IV
IV
IV
IV
II

III
III
IV
IV
III

3-10
6-5

18-7
17-29
4-9
4-10

15-2
18-9
18-11
17-27
18-13
18-16
18-18
16-2
18-20
18-22
5-5
18-24
18-26
18-28
18-30
4-11

3-13
7-19
14-4
14-6
3-52

III 2-20

III
IV
III

III
III

3-15
18-5
3-53

5-6
3-55

IV 4-11

II
III
II
II
IV
IV
IV
III
III

6-9
2-5
A-5
A-7
10-2
10-4
12-2
6-12
6-13

SX-3 First Edition

SUBROUTINES, VOLUME III

CV$FDA
CV$FDV
CV$QSD

Convert binary date to ISO format. Ill 6-15
Convert binary date to "visual" format. Ill 6-17
Convert quadsecond date to binary III 6-19
format.

D$xy series
D$INIT
DATE$
DATE$A
DELE$A
DIR$CR
DIR$LS

DIR$RD

DIR$SE

DISPLY
DKGEO$
DLINEQ

DMADD
DMADJ

DMCOF

DMCON

DMDET

DMIDN

DMINV

DMMLT

DMSCL

DMSUB
DMTRN

DOFY$A

DTIM$A
DUPLX$

DY$SGS

FORTRAN compiler division functions.
Initialize disk (obsolete).
Returns current date and time.
Return today's date, American style.
Delete a file.
Create a new user file directory (UFD).
Search for specified types of entries
in a directory open on a file unit.
Read sequentially the entries of a
directory open on a file unit.
Return directory entries meeting caller-
specified selection criteria.
Updates sense light settings.
Register disk format with driver.
Solve a system of linear
equations (double precision).
Matrix additions (double precision).
Calculate adjoint matrix
(double precision).
Calculate signed cofactor (double
precision).
Set matrix to constant matrix (double
precision).
Calculate determinant (double
precision),
Set matrix to identity matrix (double
precision).
Calculate inverted matrix
(double precision).
Matrix multiplication (double
precision).
Multiply matrix by a scalar (double
precision).
Matrix subtraction (double precision).
Calculate transpose matrix (double
precision).
Return today's date as day of year
(Julian).
Return disk time since login.
Controls the way PRIMOS treats the
user terminal.
Returns maximum number of dynamic
segments.

I
IV
III
IV
IV
II
II

II

II

III
IV
IV

IV
IV

IV

IV

IV

IV

IV

IV

IV

IV
IV

C-7
5-13
2-8
12-3
15-3
4-15
4-17

4-23

4-27

10-3
5-18
18-7

18-9
18-11

18-13

18-16

18-18

18-20

18-22

18-24

18-26

18-28
18-30

IV

IV
III

12-4

12-5
3-57

III 4-25

First Edition SX-4

INDEX BY NAME

E$xy series

EDAT$A
ENCD$A
ENCRYPT$
ENT$RD

EPF$ALLC

EPF$CPF

EPF$DEL

EPF$INIT

EPF$INVK
EPF$MAP

EPF$RUN

EQUAL$

ERKL$$

ERRPR$
ERRSET
ERTXT$
EX$CLR
EX$RD
EX$SET
EXIT
EXST$A
EXTR$A

FORTRAN compiler exponentiation
routines.
Today's date, European (military) style.
Make a number printable if possible.
Encrypt login validation passwords.
Return the contents of a named entry
in a directory open on a file unit.
Perform the linkage allocation phase
for an EPF.
Return the state of the command
processing flags in an EPF.
Deactivate the most recent invocation
of a specified EPF.
Perform the linkage initialization
phase for an EPF.
Initiate the execution of a program EPF.
Map the procedure images of an EPF file
into virtual memory.
Combine functions of EPF$ALLC, EPF$MAPr
EPF$INIT, and EPF$INVK.
Generate a filename based on
another name.
Reads or sets the erase and kill
characters.
Prints a standard error message.
Sets ERRVEC (a system error vector).
Returns text associated with error code.
Disables signalling of EXIT$ condition.
Returns state of EXIT$ signalling.
Enables signalling of EXIT$ condition.
Returns to PRIMOS.
Check for file existence.
Return an object's entryname and parent
directory pathname.

C-8

IV
IV
III
II

II

II

II

II

II
II

12-6
14-8
6-24
4-35

5-3

5-5

5-7

5-9

5-11
5-15

II

II

5-19

4-37

III

III
III
III
III
III
III
III
IV
II

3-60

3-30
10-4
2-9
7-35
7-36
7-37
5-7
15-4
4-39

F$xxxxx
F$xxyy series

FDAT$A

FEDT$A

FIL$DL
FILL$A
FINFO$

FNCHK$

FORCEW

FRE$RA

FORTRAN internal support subroutines.
FORTRAN compiler floating-point
functions.
Convert the DATMOD field returned
by RDEN$$ to DAY MON DD YYYY.
Convert the DATMOD field returned
by RDEN$$ to DAY DD MON YYYY.
Delete a file identified by a pathname.
Fill a string with a character.
Return information about a specified
file unit.
Verify a supplied string as a valid
filename.
Force PRIMOS to write modified records
to disk.
De-allocates space for RPF function
return information.

I
I

IV

IV

II
IV
II

II

II

III

B-l
C-8

14-10

14-12

4-41
10-6
4-43

4-45

4-47

4-23

SX-5 First Edition

SUBROUTINES, VOLUME III

FSUB$A
FTIM$A

Fill a substring with a given character. IV 10-7
Convert the TIMMOD field returned IV 14-14
by REDN$$.

GCHAR
GCHR$A
GEND$A
GETERR
GETID$

GINFO
GPAS$$

GPATH$

GT$PAR
GV$GET
GV$SET

Get a character from an array.
Get a character from a packed string.
Position to end of file.
Returns ERRVEC contents.
Obtain the user-id and the groups to
which it belongs.
Returns PRIMOS II information.
Obtain the passwords of a sub-UFD
of the current UFD.
Return the pathname of a specified
unit, attach point, or segment.
Parse character string into tokens.
Retrieve the value of a global variable.
Set the value of a global variable.

Ill
IV
IV
III
II

III
II

6-25
10-9
15-5
10-6
2-21

2-10
2-23

II 4-49

III
II
II

6-27
6-12
6-14

H$xy series FORTRAN compiler complex number storage. I C-5
HEAP Heap sort. IV 17-51

I$AA01
I$AA12

I$AC03
I$AC09
I$AC15

I$AD07
I$AM05
I$AM10
ISAM11
I$AM13
I$AP02
I$BD07
I$BM05
I$BM10
ICE$
IDCHK$
IMADD
IMADJ
IMCOF
IMCON
IMDET
IMIDN
IMMLT
IMSCL

Read ASCII from terminal.
Read ASCII from terminal or input stream IV
by REDN$$.
Input from parallel card reader.
Input from serial card reader.
Read and print card from parallel
card reader.
Read ASCII from disk.
Read ASCII from 9-track tape.
Read ASCII from 7-track tape.
Read BCD from 7-track tape.
Read EBCDIC from 9-track tape.
Read paper tape (ASCII).
Read binary from disk.
Read binary from 9-track.
Read binary from 7-track.
Initializes the command environment.
Validates a name.
Matrix addition (integer).
Calculate adjoint matrix (integer).
Calculate signed cofactor (integer).
Set matrix to constant matrix (integer)
Calculate matrix determinant (integer).
Set matrix to identity matrix (integer)
Matrix multiplication (integer).
Multiply matrix by scalar (integer).

IV
IV

IV
IV
IV

IV
IV
IV
IV
IV
IV
IV
IV
IV
III
III
IV
IV
IV
IV
IV
IV
IV
IV

6-8
6-10

7-22
7-24
7-26

5-4
E-7
E-7
E-7
E-7
6-13
5-8
E-7
E-7
5-8
2-22
18-9
18-11
18-13
18-16
18-18
18-20
18-24
18-26

First Edition SX-6

INDEX BY NAME

IMSUB
IMTRN
IN$LO

INSERT
IOA$
IOA$ER

IOA$RS
IOCS$F
IOCS$G
ISACL$

ISREM$

Matrix subtraction (integer)•
Calculate transpose matrix (integer).
Determines if a forced logout is in
progress.
Insertion sort.
Provides free-format output.
Provides free-format output, for error
messages.
Perform free-format output to a buffer.
Free logical unit.
Get logical unit.
Determine whether an object is ACL-
protected.
Determine whether an open file system
object is local or remote.

IV
IV
III

IV
III
III

III
IV
IV
II

18-28
18-30
2-23

17-52
3-32
3-38

6-32
3-4
3-2
2-25

II 4-52

JSTR$A Left-justify, right-justify, or
center a string.

IV 10-10

L$xy series
LDISK$

LIMIT$
LINEQ

LIST$CMD

LOGO$$
LON$CN
LON$R
LSTR$A
LSUB$A
LUDSK$
LV$GET

LV$SET

FORTRAN compiler complex number loading.
Return information on the system's list
of logical disks.
Sets and reads various timers.
Solve a system of linear equations
(single precision).
Return a list of commands valid at
mini-command level.
Logs out a user.
Switches logout notification on or off.
Reads logout notification information.
Locate one string within another.
Locate one substring within another.
List the disks a given user is using.
Retrieve the value of a CPL local
variable.
Set the value of a CPL local variable.

I
II

III
IV

C-5
4-54

8-36
18-7

II 6-16

III
III
III
IV
IV
II
II

2-24
5-20
5-21
10-12
10-14
4-57
6-18

II 6-20

M$xy series

MADD
MADJ

MCHR$A

MCOF

MCON

FORTRAN compiler multiplication I C-8
routines.
Matrix addition (single precision). IV 18-9
Calculate adjoint matrix (single IV 18-11
precision).
Move a character from one packed IV 10-16
string to another.
Calculate signed cofactor (single IV 18-13
precision).
Set matrix to constant matrix (single IV 18-16
precision).

SX-7 First Edition

SUBROUTINES, VOLUME III

MDET

MGSET$
MIDN

MINV

MKLB$F

MKON$F
MKON$P

MKONU$

MMLT

MOVEW$
MRG1$S
MRG2$
MRG3$S
MSCL
MSG$ST
MSTR$A
MSUB
MSUB$A
MTRN

Calculate matrix determinant (single
precision).
Sets the receiving state for messages.
Set matrix to identity matrix (single
precision).
Calculate inverted matrix (single
precision).
Converts FORTRAN statement label to
PL/I format.
Creates an on-unit (for FTN users).
Creates an on-unit (for PL1 and F77
users).
Creates an on-unit (for PMA and PL1
users)•
Matrix multiplication (single
precision).
Move a block of memory.
Merge sorted files.
Return next merged record.
Close merged input files.
Matrix addition (single precision).
Returns the receiving state of a user,
Move one string to another.
Matrix subtraction (single precision).
Move one substring to another.
Calculate transpose matrix (single
precision).

IV 18-18

III
IV

IV

III

III
III

III

IV

III
IV
IV
IV
IV
III
IV
IV
IV
IV

9-5
18-20

18-22

7-20

7-21
7-23

7-25

18-24

6-34
17-33
17-37
17-38
18-26
9-3
10-18
18-28
10-20
18-30

N$xy series
NAMEQ$
NLEN$A

FORTRAN compiler negation functions
Compare two character strings.
Determine the operational length
of a string.

I
III
IV

C-5
6-35
10-22

0$AA01

O$AC03
0$AC15
O$AD07
O$AD08
0$ALxx

O$AL04
O$AL06
0$AL14
O$AM05
O$AM10
0$AM11
0$AM13
O$BD07
O$BM05

Write ASCII to terminal or command
stream.
Parallel interface to card punch.
Parallel interface punch and print.
Write compressed ASCII to disk.
Write ASCII uncompressed to disk.
Interface to various printer
controllers.
Centronics line printer.
Parallel interface to MPC line printer.
Versatec printer/plotter interface.
Write ASCII to 9-track tape.
Write ASCII to 7-track tape.
Write BCD to 7-track tape.
Write EBCDIC to 9-track tape.
Write binary to disk.
Write binary to 9-track tape.

IV 6-6

IV
IV
IV
IV
IV

IV
IV
IV
IV
IV
IV
IV
IV
IV

7-31
7-32
E-2
5-10
7-1

7-3
7-3
7-13
E-7
E-7
E-7
E-7
5-6
E-7

First Edition SX-8

INDEX BY NAME

O$BM10
O$BP02
OPEN$A
OPNP$A
OPNV$A

OPVP$A

OVERFL

Write binary to 7-track tape.
Punch paper tape (binary).
Open supplied filename.
Read filename and open.
Open filename with verification
and delay.
Read filename and open, or verify
and delay.
Checks if an overflow condition has
occurred.

IV
IV
IV
IV
IV

IV

III

E-7
6-15
15-6
15-8
15-10

15-13

10-7

PUB

PUN

P10B

PlOU

PA$DEL
PA$LST

PA$SET
PAR$RV

PERM
PHANT$
PHNTM$
PL1$NL
POSN$A
PRERR
PRI$RV

PRJID$
PRWF$$

PTIME$

PWCHK$

Input character from paper tape
reader to Register A.
Input character from paper tape
to variable.
Output character from Register A to
paper-tape punch.
Output character from variable to
paper-tape punch.
Remove an object's priority access.
Obtain the contents of an object's
priority ACL.
Set priority access on an object.
Return a logical value indicating ACL
and quota support.
Generate matrix permutations.
Starts a phantom process.
Starts up a phantom process.
Performs a nonlocal GOTO.
Position file.
Prints an error message.
Returns operating system revision
number.
Returns the user's project identifier.
Read, write, position, or truncate
a file.
Returns amount of CPU time used since
login.
Validates syntax of a password.

IV

IV

IV

IV

II
II

II
II

IV
III
III
III
IV
III
III

III
II

III

III

6-17

6-19

6-18

6-20

2-27
2-28

2-30
4-59

18-32
10-8
5-23
7-27
15-17
10-9
2-12

2-2 6
4-61

2-27

2-28

Q$READ

Q$SET

QUICK
QUIT$

Return directory quota and disk record II 4-68
usage information.
Set a quota on a subdirectory of the II 4-71
current directory.
Partition exchange sort. IV 17-54
Determines if there are pending quits. Ill 3-62

RADXEX Radix exchange sor t IV 17-55

SX-9 F i r s t Edition

SUBROUTINES, VOLUME III

RAND$A

RD$CE_DP

RDASC
RDBIN
RDEN$$
RDLIN$

RDTK$$
READY$
REMEPF$

REST$$
RESU$$

RLSE$S
RMSGD$
RNAM$A

RNDI$A
RNUM$A

RPL$
RPOS$A
RRECL
RSEGAC$
RSTR$A
RSUB$A
RTRN$S
RVON$F
RVONU$
RWND$A

Generate random number and update seed,
using 32-bit word size and the linear
congruential method.
Return caller's current command
environment depth.
Read ASCII from any device.
Read binary from any device.
Position in or read from a UFD.
Read a line of characters from
a compressed ASCII disk file.
Parses a command line.
Displays PRIMOS command prompt.
Remove an EPF from a user's address
space.
Restores an R-mode executable image.
Restores and resumes an R-mode
executable image.
Get input records after SETU$.
Receives a deferred message.
Prompt, read a pathname, and check
format.
Initialize random number generator seed.
Prompt and read a number
(in any format).
Replace one EPF runfile with another.
Return position of file.
Read disk record (obsolete).
Determines access to a segment.
Rotate string left or right.
Rotate substring left or right.
Get sorted records.
Reverts an on-unit (for FORTRAN users).
Reverts an on-unit (for PL1 users).
Reposition file.

IV 13-2

II 6-22

IV
IV
II
II

III
III
II

III
III

IV
III
IV

IV
IV

II
IV
IV
III
IV
IV
IV
III
III
IV

4-5
4-9
A-9
4-74

3-16
2-29
5-22

5-13
5-15

17-26
9-7
11-2

13-4
11-4

5-24
15-18
5-14
2-13
10-23
10-26
17-28
7-28
7-29
15-19

S$xy series
SATR$$
SAVE$$
SCHAR

SEM$CL
SEM$DR
SEM$NF
SEM$OP
SEM$OU
SEM$TN
SEM$TS

SEM$TW

SEM$WT
SETRC$

FORTRAN compiler subtraction routines.
Set or modify an object's attributes.
Saves an R-mode executable image.
Store a character into an array
location.
Releases (closes) a named semaphore.
Drains a semaphore.
Notifies a semaphore.
Opens a set of named semaphores.
Opens a set of named semaphores.
Periodically notifies a semaphore.
Returns number of processes waiting on
a semaphore.
Waits on a specified named semaphore,
with timeout.
Waits on a semaphore.
Records command error status.

I
II
III
III

III
III
III
III
III
III
III

C-8
4-76
5-17
6-37

8-17
8-19
8-21
8-23
8-23
8-27
8-29

III 8-31

III
III

8-33
5-9

First Edition SX-10

INDEX BY NAME

SETU$S

SGD$DL
SGD$OP
SGDR$$

SGNL$F
SHELL
SID$GT

SIGNL$
SIZE$
SLEEP$

SLEP$I
SLITE
SLITET
SMSG$
SPAS$$

SPOOL$
SRCH$$

SRSFX$

SRTF$S
SS$ERR
SSTR$A
SSUB$A
SSWTCH
ST$SGS

STR$AL
STR$AP
STR$AS

STR$AU
STR$FP
STR$FR
STR$FS
STR$FU
SUBSRT

SUBSRT

SUSR$

Prepare sort table and buffers
for CMBN$.
Delete a segment directory.
Open a segment directory entry.
Position/ read, or modify a segment
directory.
Signals a condition.
Diminishing increment sort.
Returns user number of initiating
process.
Signals a condition {for PLl users).
Return the size of a file system entry.
Suspends a process for a specified
interval.
Suspends a process (interruptible).
Sets the sense light on or off.
Tests sense light settings.
Sends an interuser message.
Set the owner and nonowner passwords
on an object.
Insert a file in spooler queue.
Open/ close, delete, or verify
existence of an object.
Search for a file with a list of
possible suffixes.
Sort several input files.
Signals an error in a subsystem.
Shift string left or right.
Shift substring left or right.
Tests sense switch settings.
Returns maximum number of static
segments.
Allocates user-class dynamic memory.
Allocates process-class dynamic memory.
Allocates subsystem-class dynamic
memory.
Allocates user-class dynamic memory.
Frees process-class dynamic memory.
Frees user-class dynamic memory.
Frees subsystem-class dynamic memory.
Frees user-class dynamic memory.
Sort file on ASCII key.
(V-mode)
Sort file on ASCII key.
(R-mode)
Tests if current user is supervisor.

IV 17-22

II
II
II

III
IV
III

III
II
III

III
III
III
III
II

IV
II

4-82
4-84
4-86

7-30
17-56
2-30

7-32
4-91
8-39

8-40
10-12
10-13
9-9
2-32

7-8
4-94

II 4-103

IV
III
IV
IV
III
III

III
III
III

III
III
III
III
III
IV

IV

III

17-16
5-11
10-28
10-30
10-14
4-26

4-5
4-7
4-8

4-10
4-11
4-12
4-13
4-14
17-10

17-40

2-31

T$AMLC
T$CMPC
T$LMPC
T$MT
T$PMPC

Communicate with AMLC driver.
Input from MPC card reader.
Move data to LPC line printer.
Raw data mover for tape.
Raw data mover for card reader,

IV
IV
IV
IV
IV

8-23
7-28
7-6
7-37
7-34

SX-11 First Edition

SUBROUTINES, VOLUME III

T$SLC0
T$VG
TUB
TUN
T10B
TlOU
TEMP$A
TEXTO$
TI$MSG

TIDEC
TIHEX
TIMDAT

TIME$A
TIOCT
TL$SGS
TNCHK$

TNOU

TNOUA
TODEC
TOHEX
TONL
TOOCT
TOVFD$

TREE$A
TRNC$A
TSCN$A
TSRC$$

TTY$IN

TTY$RS

TYPE$A

Coinmunicate with SMLC driver.
Interface to Versatec printer.
Reads a character (function).
Reads a character (procedure).
Writes one character from Register A.
Writes one character.
Open a scratch file.
Checks filename for valid format.
Displays standard message showing
times used.
Reads a decimal number.
Reads a hexadecimal number.
Returns timing information and user
identification.
Return time of day.
Reads an octal number.
Returns highest segment number.
Verify a supplied string as a valid
pathname.
Writes characters to terminal, followed
by NEWLINE.
Writes characters to terminal.
Writes a signed decimal number.
Writes a hexadecimal number.
Writes a NEWLINE.
Writes an octal number.
Writes a decimal number, without
spaces.
Test for pathname.
Truncate a file.
Scan the file system tree structure.
Open, close, delete, or find a file
anywhere in the file structure.
Checks for unread terminal input
characters.
Clears the terminal input and output
buffers.
Determine string type.

IV
IV
III
III
III
III
IV
III
III

III
III
III

IV
III
III
II

8-3
7-16
3-23
3-24
3-47
3-48
15-20
10-15
2-32

3-26
3-27
2-34

12-7
3-28
4-27
4-109

III 3-40

III
III
III
III
III
III

IV
IV
IV
II

III

III

IV

3-41
3-42
3-43
3-44
3-45
3-46

10-32
15-22
15-23
A-17

3-63

3-65

10-35

UID$BT
UID$CH

UNIT$A
UNITS$

UNO$GT
UPDATE
USER$
UTYPE$

Return unique bit string.
Convert UID$BT output into character
string.
Check for file open.
Return caller's minimum and maximum
file unit numbers.
Lists users with same name as caller.
Updates current UFD (PRIMOS II only).
Returns user number and count of users
Returns user type of current process.

Ill
III

IV
II

III
III
III
III

6-39
6-40

15-28
4-112

2-36
10-17
2-15
2-38

First Edition SX-12

INDEX BY NAME

VALID$ Validates a name against composite
identification.

Ill 2-41

WILD$

WRASC
WRBIN
WRECL
WTLIN$

Return a logical value indicating
whether a wildcard name was matched.
Write ASCII.
Write binary to any output device.
Write disk record (obsolete).
Write a line of characters to a
compressed ASCII file.

II 4-113

IV
IV
IV
I I

4 - 3
4-7
5-17
4-115

YSNO$A Ask question and obtain a yes or
no answer.

IV 11-7

Z$80 Clear double-precision exponent I C-5

SX-13 First Edition

(0^-

Index

Numbers

32IX mode pointers/ 1-8

64V mode pointers, 1-8

Abbreviations enable switch,
value of, 2-3

Abbreviations, expanding, 2-20

Access violation condition, A-2

Addressing modes, 1-14

Alarm condition, A-2

Aligning bit arguments, 1-12

Allocating memory, 4-1 to 4-3,
4-5, 4-7, 4-8, 4-10 to 4-14,
4-16, 4-21, 4-23, 4-25, 4-26

Allocating memory on the current
stack, 4-3

AMLC (Asynchronous Multi-line

Controller) functions, 3-59

Amount of time slice left, 2-17

ANY$ on-unit, 7-2, 7-6

Area condition, A-3

Arguments to subroutines, 1-6
Arithmetic exception condition,

A-3

Array,
getting character from, 6-25
indexing, 1-9
storing character into, 6-37
subscripts in, 1-8

Assigned lines, 3-3

B

Bad nonlocal GOTO condition, A-4

Bad password condition, A-4

BIN data type, 1-7

X-l First Edition

SUBROUTINES, VOLUME III

Binary search, 6-21

BIND, 1-14

Bit numbering, 1-12

Bit string, unique, 6-39

BIT(l) data type, 1-8

BIT(n) ALIGNED data type, 1-12

BIT(n) data type, 1-8

Bits in arguments, 1-11

Blanks in command lines, 3-19

Break (CONTROL-P), inhibit or
enable, 3-50

Break pending, 3-62

Buffer overflow on input, 3-58

C (language), 1-8

Call statements, 1-4

Calling functions, 1-5

Calling subroutines, 1-4

Carriage return output, 3-44

Carrier signal, 3-59

Changing login password, 2-18

CHAR(*) data type, 1-7

CHAR{*) VAR data type, 1-7

CHAR(n) data type, 1-7

CHAR(n) VAR data type, 1-7

Character,
echoing at input, 3-5, 3-9
from array, 6-25

Character (continued)
input, 3-5, 3-7, 3-9, 3-23,
3-24

input from terminal, 3-13
input, raw, 3-13
into array, 6-37
output, 3-40, 3-41, 3-48
read one, 3-23, 3-24

Character string, parsing, 6-27

Character strings, comparison of,
6-35

CHARACTER(*) data type, 1-7

CHARACTER(*) NONVARYING data
type, 1-7

CHARACTER(*) VARYING data type,
1-7

CHARACTER(n) data type, 1-7

CHARACTER(n) NONVARYING data
type, 1-7

CHARACTER(n) VARYING data type,
1-7

Checking filename validity,
10-15

Checking for DYNT accessibility,
2-4

Cleanup condition, 7-10, 7-15,
A-4

Clearing user input and output
buffers, 3-65

Closing a semaphore, 8-17

COMI EOF condition, A-5

COMI files, 3-2

COMI input stream, switching
between file and terminal,
3-53

Command input end-of-file
condition, A-5

First Edition X-2

INDEX

,|p\

Command input files, 3-2

Command input stream, switching
between file and terminal,
3-53

Command level control, 5-4

Command levels, 3-31, 5-5, 5-6

Command line delimiters, 3-19

Command line parsing, 3-16

Command output status
information, 3-52

Command output, switching to file
or terminal, 3-55

Commas in command lines, 3-19

Comments in command lines, 3-19

COMO output, switching to file or
terminal, 3-55

COMO status information, 3-52

Comparing two character strings,
6-35

Comparison of dates, 6-14

Computer model number, 2-5

Condition,

cleanup, 7-10, 7-15
end-of-file, 7-14
quit, 7-13
reenter, 7-12

Condition mechanism, 7-1, A-l
data structure formats, 7-38
debugging considerations, 7-7
disable on-unit, 7-28, 7-29
disable signalling of EXIT$,

7-35
enable signalling of EXIT$,

7-37
example, 7-7
fault frame header, 7-45
FORTRAN considerations, 7-5,

7-20

Condition mechanism (continued)
make on-unit, 7-21, 7-23, 7-25
make PL/I-style label, 7-20
nonlocal GOTO, 7-27
on-unit descriptor block, 7-48
return state of EXIT$

signalling, 7-36
revert on-unit, 7-28
scanning for more on-units,

7-19
signalling a condition, 7-30,

7-31
stack frame header, 7-42

Condition mechanism routines,
7-18

Conditions, standard,
access violation, A-2
alarm, A-2
area, A-3
arithmetic exception, A-3
bad nonlocal GOTO, A-4
bad password, A-4
cleanup, A-4
COMI EOF, A-5
command input end-of-file, A-5
conversion error, A-5
CPU timer, A-5
default, A-3
division by zero, A-25
end of file, A-5
end of page, A-6
error, A-6
ERRRTN, A-6
exit, A-7
finish, A-7
fixed-point overflow, A-7
heap error, A-8
illegal instruction, A-8
illegal return by on-unit, A-8
illegal segment number, A-9
key, A-9
linkage fault, A-10
listener order, A-10
logout, A-11
name, A-11
no available segments, A-12
nonlocal GOTO, A-12
NPX slave signalled, A-13
null pointer, A-14
out of bounds, A-14
overflow, A-15
page fault error, A-15

X-3 First Edition

SUBROUTINES, VOLUME III

Conditions, standard (continued)
pause, A-15
phantom logging out, A-16
pointer fault, A-16
process termination, A-7
quit, A-17
record, A-17
reenter, 7-12, A-18
restricted instruction, A-18
ring-zero error, A-19
size, A-19
stack overflow, A-19
stop, A-20
storage, A-20
storage allocation error, A-8
string range, A-20
string size, A-21
subscript range, A-21
subsystem error, A-21
SVC instruction, A-22
system storage, A-22
transmit, A-23
UII, A-23
undefined gate, A-24
underflow, A-24
unimplemented instruction,
A-23

warm start, A-24
zero divide, A-25

Control codes for IOA$, 3-33

Control of user terminals, 3-49

Control panel lights, 10-3,
10-12, 10-13

CONTROL-P, 3-63
inhibit or enable, 3-50
recognize, 3-62

CONTROL-S, CONTROL-Q, 3-57

Conversion error condition, A-5

Conversion routines, 6-1
ASCII date to FS binary format,

6-13
decimal character string to
fixed bin(15), 6-3

decimal character string to
fixed bin(31), 6-5

FS binary date to ASCII visual
format, 6-17

Conversion routines (continued)
FS binary date to ISO format,

6-15
FS binary date to quadseconds,
6-12

hex character string to fixed
bin(31), 6-7

ISO-format date to FS binary
format, 6-13

octal character string to fixed
bin(31), 6-9

quadsecond-format date to FS
binary format, 6-19

USA-format date to FS binary
format, 6-13

visual-format date to FS binary
format, 6-13

Cooperating processes, 8-1, 8-6

CPU id number, 2-5

CPU time used, 2-27

CPU time, display, 2-32

CPU time, returned value, 2-34

CPU timer condition, A-5

Crawlout, 7-17, 7-31, 7-33, 7-38
to 7-43

CRLF output, 3-44

Current date and time, 2-8

DATA SET BUSY, 3-57

Data structure formats, 7-38

Data type equivalents, B-l

Data types for parameters and
returned values, 1-7

Date conversion routines, 6-11

Date format, file system, C-l

First Edition X-4

INDEX

Date, returned value, 2-34

Date, value of, 2-8

Dates, comparison of, 6-14

De-allocating memory or space
(See Freeing memory)

Decimal number,
input, 3-2 6
output, 3-42

Declarations of functions, 1-5

Declarations of subroutines, 1-4

Default condition, A-3

Delaying a process, 8-38 to 8-40

Delimiters in command lines,
3-19

Disabling on-unit, 7-28, 7-29

Disabling signalling of EXIT$,
7-35

Display "ready" prompt, 2-29

Display lights, 10-3, 10-12,
10-13

Display time, elapsed, CPU, I/O,
2-32

Division-by-zero condition, A-25

Draining a semaphore, 8-19

Dynamic accessibility of
routines, 2-4

Dynamic segments, 4-25, 4-27
(See also Memory allocation)

DYNT, determining accessibility
of, 2-4

ECB (entry control block), 7-40,
7-43 to 7-45, 7-48

Echo linefeed with carriage
return, 3-57

Elapsed time, display, 2-32

Enabling CONTROL-P, 3-50

Enabling signalling of EXIT$,
7-37

Encryption, 6-24

End-of-file condition, 7-14, A-5

End-of-line token in command
lines, 3-21

End-of-page condition, A-6

Entry control block, 7-40, 7-43
to 7-45, 7-48

EPF files, 5-2

EPF function information space,
allocating, 4-16, 4-21
freeing, 4-23

EPF libraries, 1-15

Erase and kill characters, 3-60

Error code, converting to error
message, 3-30

Error codes, standard, 1-13

Error condition, A-6

Error handling, 5-5, 5-11, 7-1,
10-4, 10-6, 10-9

(See also Conditions, standard)

Error message output, 3-36

Error message text from error
code, 2-9

X-5 First Edition

SUBROUTINES, VOLUME III

Error message, printing from
error code, 3-30

Error messages, 1-6, 3-56, 10-4,
10-6, 10-9

Error vector, 10-4, 10-6, 10-9

ERRRTN condition, A-6

Example for IOA$, 3-36

Example of Pascal program, 3-11

Executable program format (See
EPF)

Exit condition, A-7

Exit condition control, 7-34

EXIT$ signalling, state of, 7-36

Exiting from static-mode
programs, 5-7

Expanding PRIMOS abbreviations,
2-20

Extended stack frame header,
7-42

Extending the current stack
frame, 4-3

Fault frame header, 7-45

File-system date format, C-l

Filename validity test, 10-15

Finish condition, A-7

FIXED BIN data type, 1-7

FIXED BIN(15) data type, 1-7

FIXED BIN(31) data type, 1-7

FIXED BINARY data type, 1-7

Fixed-point overflow condition,
A-7

FLOAT BIN data type, 1-7

FLOAT BIN(23) data type, 1-7

FLOAT BIN(47) data type, 1-7

FLOAT data type, 1-7

Forced logout in progress,
determining if, 2-23

FORTRAN considerations for
condition mechanism, 7-5,
7-20

Free-format output,
blank-filling, 3-34
character string, 3-35
decimal number, 3-35
error messages, 3-36
field width, 3-34
filler character, 3-35
form feed, 3-35
hexadecimal number, 3-35
left justification, 3-34
logical, 3-35
newline, 3-35
octal halfword, 3-35
octal number, 3-35
pointer, 3-35
precision, 3-34
repeat group, 3-36
right justification, 3-34
space-filling, 3-34
trimmed character string, 3-35
varying character string, 3-35
zero-filling, 3-34

Free-format output to a buffer,
6-32

Free-format terminal output,
3-32

Freeing memory, 4-11 to 4-14,
4-23

FS binary date, 6-12

FS binary date format, C-l

First Edition X-6

Full duplex, 3-57

Function calls, 1-5

Function declarations, 1-5

Functions, 1-10

Functions without parameters,
1-5

Functions, distinguished from
subroutines, 1-1

Generating unique bit string,
6-39

Getting character from array,
6-25

H

Half duplex, 3-57

Heap error condition, A-8

Hexadecimal number,
input, 3-27
output, 3-43

High-order bit, 1-12

Highest segment allocated, 4-27

I/O time, display, 2-32

I/O time, returned value, 2-34

Illegal instruction condition,
A-8

Illegal return by on-unit
condition, A-8

INDEX

Illegal segment number condition,
A-9

ILLEGAL SEGNO error message, 1-6

Informational routines, 4-24

Inhibiting CONTROL-P, 3-50

Initializing command environment,
5-8

Input (See Read)

INPUT -> OUTPUT subroutine
parameters, 1-6

Input buffer clearing, 3-65

Input buffer overflow, 3-58

Input buffer status, 3-63

INPUT subroutine parameters, 1-6

INPUT/OUTPUT subroutine
parameters, 1-6

Integer array, 1-7

Integer output, 3-46

Interuser messages, 9-1

K

Key arguments, 1-12

Key condition, A-9

Key names as arguments, 1-12

Keys, 1-12

Keys in SYSCOM UFD, 1-12

Kill and erase characters, 3-60

X-7 First Edition

SUBROUTINES, VOLUME III

Libraries, 1-14, 1-15

Lights on control panel, 10-3,
10-12, 10-13

Limit timers, 8-35, 8-36

Line feed output, 3-44

Line feeds not read at input,
3-5

Linkage fault condition, A-10

Linking, 1-14

Listener order condition, A-10

LOAD, 1-14

Load-time linking, 1-14

Loading, 1-14

Locks, 8-12
mutual exclusion, 8-12
Nl locks, 8-13
pooled record locks, 8-14
producers and consumers, 8-13
readers and writers, 8-13
record locks, 8-14

Login password validation, 2-28

Login password, changing, 2-18

Login validation, 6-24

Logout condition, A-11

Logout information, 5-21

Logout notification, 5-2, 5-3,
5-20

Logout notification condition
handler, 5-3

Logout other processes, 2-24

Logout this process, 2-24

Logout, forced, in progress,
2-23

Low-order bit, 1-12

M

Making on-unit, 7-21, 7-23, 7-25

Making PL/I-style label, 7-20

Maximum dynamic segments
allocated, 4-25

Maximum static segments
allocated, 4-26

Memory allocation, 4-1, 4-2,
4-5, 4-7, 4-8, 4-10 to 4-14,
4-16, 4-21, 4-23

Memory blocks, move, 6-34

Messages, 9-1
receive state of a process,
9-3 to 9-5

return waiting deferred
messages, 9-7

sending, 9-9

Move block of memory, 6-34

Mutual exclusion, 8-12

N

Name condition, A-11

New command level, 5-5, 5-6

Newline output, 3-44

Newlines in command lines, 3-19

No available segments condition,
A-12

Nonlocal GOTO, 7-2, 7-20, 7-27

Nonlocal GOTO condition, A-12

First Edition X-8

INDEX

Notify and Wait (See Semaphores)

Notifying a semaphore, 8-21,
8-27

NPX slave signalled condition,
A-13

Null pointer condition, A-14

Null tokens in command lines,
3-21

Numeric conversion routines, 6-2

Out-of-bounds condition, A-14

Output (See Free-format output;
Print; Write)

Output buffer clearing, 3-65

OUTPUT subroutine parameters,
1-6

Overflow condition, A-15

Overflow error, 10-7

Overflow of input buffer, 3-58

O

Obsolete subroutines, 10-1

Octal number,
input, 3-27
output, 3-45

On-unit descriptor block, 7-48

On-unit, default, 7-6

On-units, 7-2

ONFILE PL/I function, A-5, A-9

ONKEY PL/I function, A-9

Opening a semaphore, 8-23

Operating system revision number,
2-12

OPTIONAL INPUT subroutine
parameters, 1-6

OPTIONAL OUTPUT subroutine
parameters, 1-6

Optional parameters, 1-9, 1-10

OPTIONAL RETURNED VALUE, 1-11

OPTIONAL RETURNED VALUE
subroutine parameters, 1-7

Optional returned values, 1-10

P and V (See Semaphores)

Page fault error condition, A-15

Parameter data types, 1-7

Parameter lists, 1-9

Parameters, 1-11
INPUT, 1-6
INPUT -> OUTPUT, 1-6
INPUT/OUTPUT, 1-6
OPTIONAL INPUT, 1-6
OPTIONAL OUTPUT, 1-6
OPTIONAL RETURNED VALUE, 1-7
OUTPUT, 1-6
RETURNED VALUE, 1-6

Parameters to subroutines, 1-6

Parent-process id number, 2-30

Parity error, 3-58

Parse command line, 3-16

Parsing character string, 6-27

Parsing command line, 3-16

Parsing tokens in the command
line, 3-21

Pascal program example, 3-11

X-9 First Edition

SUBROUTINES, VOLUME III

Password validation, 2-28, 6-24

Password, changing, 2-18

Pause condition, A-15

PAUSE FORTRAN statement, A-15

Periodic notification of a
semaphore, 8-27

PH_LOGO$, 5-3, 5-20

Phantom input and output, 3-3

Phantom logging out condition,
A-16

Phantom logout information, 5-3

Phantom process control, 5-18

Phantom processes, 5-2, 5-3

Phantom, starting, 5-23, 10-8

PL/I-style label, 7-20

POINTER data type, 1-8

Pointer fault condition, A-16

POINTER FAULT error message, 1-6

POINTER OPTIONS(SHORT) data type,
1-8

Precautions for recursive mode,
5-2

PRIMOS II information, 2-10

PRIMOS revision number, 2-12

Print (See Free-format output)

Print error message, 10-9

Print error message from error
code, 3-30

Print PRIMOS "ready" prompt,
2-29

printf (from C), 3-32

printf-style output, 3-32

Process cooperation, 8-1, 8-6

Process delay, 8-38 to 8-40

Process termination condition,
A-7

Process-class storage, 4-7,
4-11, 4-21

Process-id number, value of,
2-15

Process-id of spawning (parent)
process, 2-30

Process-ids with same name as
caller, 2-36

Project name, returned value,
2-26

Project name, validity check,
2-22

Prompt displayed on screen, 2-29

Q

Quadseconds, 6-12, C-l

Quit, 3-63

Quit (CONTROL-P), inhibit or
enable, 3-50

Quit condition, 7-13, A-17

Quit pending, 3-62

Quoted text in command lines,
3-19

First Edition X-10

INDEX

R-mode executable code,
restoring, 5-13
resuming, 5-15
saving, 5-17

Raw character input, 3-13

Raw text from the command line,
3-22

Read,
decimal number, 3-26
hexadecimal number, 3-27
line of text, 3-10, 3-15
number of characters, 3-13
octal number, 3-27
raw text from the command line,
3-22

single character, 3-5, 3-7,
3-9, 3-23, 3-24

tokens from command line, 3-16

Read R-mode executable code from
file to memory, 5-13

Recognizing CONTROL-P, 3-62

Record condition, A-17

Recording (COBOL or Pascal) level
numbers, 1-9

Recursive command environment,
5-1

Recursive mode, 5-1, 5-2

Recursive-mode precautions, 5-2

Reenter condition, 7-12, A-18

Register A output, 3-47

Register setting in command
lines, 3-20

Releasing a semaphore, 8-17

Reserved characters in command
lines, 3-18

Resetting the counter of a
semaphore, 8-19

Resource sharing, 8-1

Restarting static-mode programs,
5-7

Restoring code from file to
memory, 5-13

Restricted instruction condition,
A-18

Resuming R-mode executable code,
5-15

Return code, setting, 5-9

Return state of EXIT$ signalling,
7-36

RETURNED VALUE, 1-11

RETURNED VALUE subroutine
parameters, 1-6

Returned-value data types, 1-7

Returning from static-mode
programs, 5-7

Returning memory or returning
space (See Freeing memory)

Reverse channel, 3-57

Revert on-unit, 7-28

Reverting on-units, 7-4

Revision number of operating
system, 2-12

Ring-zero error condition, A-19

Running executable code (See
Resuming executable code)

Runtime linking, 1-15

X-ll First Edition

SUBROUTINES, VOLUME III

Saving R-mode executable code,
5-17

Scanning for more on-units, 7-19

Search rules, 1-15

Searching, 6-21

SEG, 1-14

Segment access, verifying, 2-13

Segment existence, verifying,
2-13

Semaphore pitfalls, avoiding,
aborted notifier, 8-11
coding suggestions, 8-10, 8-11
deadly embrace, 8-11
expiring timer, 8-9
external notifies, 8-9
infinite waits, 8-11
malfunctioning process, 8-10
multiple waits, 8-11
process quit, 8-10

Semaphore subroutines, 8-16

Semaphores, 8-1
(See also Locks)
closing, 8-17
coding considerations, 8-8
(See also Semaphore pitfalls,
avoiding)

draining, 8-19
level numbers, 8-12
named, 8-7
notifying, 8-21, 8-27
numbered, 8-6
numbered vs named, 8-8
on Prime computers, 8-6
opening, 8-23
opening and closing, 8-7, 8-8
periodic notification, 8-27
quittable, 8-10
releasing, 8-17
resetting the counter, 8-19
testing the counter, 8-29
timed, 8-6
timers and timeouts, 8-8
waiting on, 8-31, 8-33

Sending interuser messages, 9-9

Sense lights, 10-3, 10-12, 10-13

Sense switches, 10-3, 10-12 to
10-14

Setting return code, 5-9

Severity code, 5-9

Shared code, 1-15

Signalling a condition, 7-4,
7-30, 7-31

Single character at input, 3-9

Single-character arguments, 3-3

Single-character input, 3-5, 3-7

Single-quote character in command
lines, 3-19

Size condition, A-19

Skipping over tokens in the
command line, 3-21

Sleep routines, 8-38 to 8-40

Square brackets, showing optional
parameters, 1-10

Stack frame header, 7-42

Stack overflow condition, A-19

Standard conditions, A-l

Standard error codes, 1-13

Starting a phantom, 5-23, 10-8

Static mode, 5-1, 5-2

Static segments, 4-2 6

Status of input buffer, 3-63

Stop condition, A-20

First Edition X-12

INDEX

Storage allocation error
condition, A-8

Storage condition, A-20

Storing character into array,
6-37

String (See Character string)

String range condition, A-20

String size condition, A-21

Structure (PL/I), 1-9

Subroutine,
arguments, 1-6
calls, 1-4
declarations, 1-4
parameters, 1-6
usage, 1-2

Subroutine description, example,
1-3

Subroutines, distinguished from
functions, 1-1

Subroutines, key to descriptions,
1-2

Subscript range condition, A-21

Subsystem error, 5-11

Subsystem error condition, A-21

Subsystem-class storage, 4-8,
4-13

Superseded subroutines, 10-1

Supervisor process validation,
2-31

SVC instruction condition, A-22

SYSCOM UFD, 1-12

System information subroutines,
2-2

System storage condition, A-22

Terminal control, 3-49

Terminal I/O, 3-1

Terminal input, 3-4

Terminal output, 3-29

Terminal output, free-format,
3-32

Terminal output, turning off or
on, 3-55

Testing the counter of a
semaphore, 8-2 9

Time (current), value of, 2-8

Time slice amount left, 2-17

Time used since login, 2-27

Time, displaying elapsed, CPU,
I/O, 2-32

Time, returned values, 2-34

Timer, A-2, A-5

Timers, limit, 8-35, 8-36

Token types, 3-20

Tokens i n command l i n e s , 3-20,
3-21

Tokens, p a r s i n g s t r i n g i n t o ,
6-27

Transmit c o n d i t i o n , A-23

U

UFD, updating current, 10-17

UII condition, A-23

Undefined gate condition, A-24

X-13 First Edition

SUBROUTINES, VOLUME III

Underflow condition, A-24

Unimplemented instruction
condition, A-23

Unique bit string, 6-39

Unshared code, 1-15

Updating current UFD, 10-17

Usage, 1-11

Usage of subroutines, 1-2

User count, value of, 2-15

User identification, verifying,
2-41

User information subroutines,
2-16

User number, value of, 2-15

User numbers with same login name
as caller, 2-36

User terminal control, 3-49

User terminal I/O, 3-1

User terminal input, 3-4

User terminal output, 3-29

User type of the current process,
2-38

User-class storage, 4-5, 4-10,
4-12, 4-14

User-id, validity check, 2-22

W

Wait and Notify (See Semaphores)

Waiting on a semaphore, 8-31,
8-33

Warm start condition, A-24

Write, (See also Free-format
output)

carriage return and line feed,
3-44

CRLF, 3-44
decimal number, 3-42
from Register A, 3-47
hexadecimal number, 3-43
integer, 3-46
n characters, 3-40, 3-41
octal number, 3-45
one character, 3-48

write (from Pascal), 3-32

X

XON-XOFF control, 3-57

Zero-divide condition, A-25

V

Validating a string against
composite user
identification, 2-41

First Edition X-14

^

SURVEY

(£\

£)

READER RESPONSE FORM

DOC10082-1LA Subroutines Reference Guide Volume III

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand __average very clear

Technical level: too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Name: Position:

Company:

Address:

.Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime.
Attention: Technical Publications
BldglO
Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC10082-1LA Subroutines Reference Guide Volume III

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple about right .too technical

Technical accuracy: poor average very good

Examples: too many __about right too few

Illustrations: too many about right .too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Name: Position:

Company:

Address:

jps Zip:

/ " ^ k

First Class Permit «531 Natick. Massachusetts 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

« ^ M ^ . M t t » M I M » I M M U ^ I ^ > M E A i M ^ W J W J ^ W I ^ H ^

BUSINESS REPLY MAIL
M l l M . < . U J J t « J M W M « r f U m j » W » * ^ ^

Postage will be paid by:

Attention: Technical Publications
Rlrin m

READER RESPONSE FORM

DOC10082-1LA Subroutines Reference Guide Volume III

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand _average very clear

Technical level: too simple __about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Name: Position:

Company:

Address:

f^\ Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime,
Attention: Technical Publications
Bldg 10
P r i m a Dnr l r Ma«i/»lr M a tVi~Jttt\

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	About This Book
	vii
	viii
	ix
	x
	xi
	Chapter 1
	Overview of Subroutines
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	Chapter 2
	Core Operating System Services
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	Chapter 3
	User Terminal I/O
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	Chapter 4
	Memory Allocation
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	Chapter 5
	Program Control
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	Chapter 6
	Conversion Routines and Other Utilities
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	Chapter 7
	Condition Mechanism
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	Chapter 8
	Semaphores and Timers
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	Chapter 9
	Message Facility
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	Chapter 10
	Superseded Routines
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	Appendixes
	Appendix A
	Standard Conditions
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	Appendix B
	Data Type Equivalents
	B-1
	B-2
	B-3
	C-1
	C-2
	Indexes
	Index of Subroutines
	SX-1
	SX-2
	SX-3
	SX-4
	SX-5
	SX-6
	SX-7
	SX-8
	SX-9
	SX-10
	SX-11
	SX-12
	SX-13
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	Survey
	
	
	
	
	
	

